MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - October/November 2011	9702	22

$\begin{aligned} 1 \text { (a) average velocity } & =540 / 30 \\ & =18 \mathrm{~m} \mathrm{~s}^{-1}\end{aligned}$
C1
(b) velocity zero at time $t=0 \quad \mathrm{~B}$
positive value and horizontal line for time $t=5 \mathrm{~s}$ to 35 s
line / curve through $v=0$ at $t=45 \mathrm{~s}$ to negative velocity
negative horizontal line from 53 s with magnitude less than positive value and horizontal line to time $=100 \mathrm{~s}$
(ii) work done is the product of the force and the distance moved in the direction of the force
(b) (i) $W=F s$ or $W=$ mas or $W=m\left(v^{2}-u^{2}\right) / 2$ or $W=$ force \times distance s
(ii) as $=\left(v^{2}-u^{2}\right) / 2$ any subject
$W=$ mas hence $W=m\left(v^{2}-u^{2}\right) / 2$
RHS represents terms of energy or with $u=0 \mathrm{KE}=1 / 2 m v^{2}$
(c) (i) work done $=1 / 2 \times 1500 \times\left[(30)^{2}-(15)^{2}\right](=506250)$
distance $=W D / F=506250 / 3800=133 \mathrm{~m}$
or $F=m a \quad a=2.533\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
$v^{2}=u^{2}+2 a s \quad s=133 \mathrm{~m}$
(ii) the change in kinetic energy is greater or the work done by the force has to be greater, hence distance is greater (for same force)
allow: same acceleration, same time, so greater average speed and greater distance

3 (a) (i) stress = force / (cross-sectional) area
(ii) strain $=$ extension / original length or change in length / original length
(b) point beyond which material does not return to the original length / shape / size when the load / force is removed

A1

B1
B1 M1

A1

C1

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	22

(c) UTS is the maximum force / original cross-sectional area wire is able to support / before it breaks A1
allow one: maximum stress the wire is able to support / before it breaks
(d) (i) straight line from $(0,0)$
correct shape in plastic region
(ii) only a straight line from $(0,0)$ brittle: force proportional to extension until it breaks

(ii) 1. does not return to its original length / permanent extension (as entered
plastic region)
2. returns to original length / no extension (as no plastic region / still in elastic region)
(ii) $E=1500 / 20 \times 10^{-3}=75000 \mathrm{Vm}^{-1}$
(iii) $F=q E$
($W=m g$ and) $q E=m g \quad$ C1
$q=m g / E=5 \times 10^{-15} \times 9.81 / 75000$
$=6.5 \times 10^{-19} \mathrm{C}$
negative charge
(iv) $F>m g$ or F now greater \quad B1
drop will move upwards

5 (a) (i) $I_{1}+I_{3}=I_{2}$
(ii) $E_{1}=I_{2} \frac{R_{2}}{2}+I_{1} \frac{R_{2}}{2}+I_{1} R_{1}+I_{1} r_{1}$
(iii) $\begin{aligned} & E_{1}-E_{2} \\ & =-I_{3} r_{2}+I_{1}\left(R_{1}+r_{1}+R_{2} / 2\right)\end{aligned}$
(b) p.d. across $\underline{B J}$ of wire changes / resistance of $\underline{B J}$ changes there is a difference in p.d across wire and p.d. across cell E_{2}

6 (a) waves overlap B1 A1 C1

A1 A1

A1

B1
B1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	22

(b) waves travelling in opposite directions overlap / incident and reflected waves overlap
(allow superpose or interfere for overlap here)
B1
waves have the same speed and frequency
B1
(c) (i) time period $=4 \times 0.1$ (ms)
$f=1 / T=1 / 4 \times 10^{-4}=2500 \mathrm{~Hz}$
C1
A1
(ii) 1. the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node

B1
2. $\lambda / 2=6.7(\mathrm{~cm}) \quad \mathrm{C} 1$
$v=f \lambda$
$v=2500 \times 13.4 \times 10^{-2}=335 \mathrm{~m} \mathrm{~s}^{-1}$
C1
A1
incorrect λ then can only score second mark

7 (a) (i) the half life / count rate / rate of decay / activity is the same no matter what external factors / environmental factors or two named factors such as temperature and pressure changes are applied

B1
(ii) the observations of the count rate / count rate / rate of decay / activity / radioactivity during decay shows variations / fluctuations

B1
(b)

property	α-particle	β-particle	γ-radiation
charge	$\mathbf{(+) 2 e}$	-e	0
mass	$4 u$	$\mathbf{9 . 1 1 \times 1 \mathbf { 1 0 } ^ { \mathbf { - 3 1 } } \mathbf { k g }}$	0
speed	$\mathbf{0 . 0 1}$ to $\mathbf{0 . 1} \boldsymbol{c}$	up to $0.99 \boldsymbol{c}$	\boldsymbol{c}

one mark for each correct line
B3
(c) collision with molecules
causes ionisation (of the molecule) / electron is removed

