MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/42
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	42

Section A

1 (a) gravitational force provides the centripetal force
B1
$G M m / r^{2}=m r \omega^{2}$ (must be in terms of ω) B1
$r^{3} \omega^{2}=G M$ and $G M$ is a constant B1
(b) (i) 1. for Phobos, $\omega=2 \pi /(7.65 \times 3600)$

$$
=2.28 \times 10^{-4} \mathrm{rad} \mathrm{~s}^{-1}
$$

$\left(9.39 \times 10^{6}\right)^{3} \times\left(2.28 \times 10^{-4}\right)^{2}=6.67 \times 10^{-11} \times M$ C1 $M=6.46 \times 10^{23} \mathrm{~kg}$ A1
2. $\left(9.39 \times 10^{6}\right)^{3} \times\left(2.28 \times 10^{-4}\right)^{2}=\left(1.99 \times 10^{7}\right)^{3} \times \omega^{2}$

C1
$\omega=7.30 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
$T=2 \pi / \omega=2 \pi /\left(7.30 \times 10^{-5}\right)$

$$
=8.6 \times 10^{4} \mathrm{~s}
$$

$$
=23.6 \text { hours }
$$

(ii) either almost 'geostationary'
or satellite would take a long time to cross the sky
B1

2 (a) e.g. moving in random (rapid) motion of molecules/atoms/particles
no intermolecular forces of attraction/repulsion
volume of molecules/atoms/particles negligible compared to volume of container
time of collision negligible to time between collisions
(1 each, max 2)
(b) (i) 1. number of (gas) molecules
2. mean square speed/velocity (of gas molecules)
(ii) either $p V=N k T$ or $p V=n R T$ and links n and k and $\left\langle E_{k}\right\rangle=1 / 2 m<c^{2}>$
clear algebra leading to $\left\langle E_{K}\right\rangle=\frac{3}{2} k T$
(c) (i) sum of potential energy and kinetic energy of molecules/atoms/particles M1 reference to random (distribution)
(ii) no intermolecular forces so no potential energy
(change in) internal energy is (change in) kinetic energy and this is proportional to (change in) T

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	$\mathbf{4 2}$

3 (a) (i) amplitude remains constant
(ii) amplitude decreases gradually M1
light damping A1
(iii) period $=0.80 \mathrm{~s} \quad$ C1
frequency $=1.25 \mathrm{~Hz}$ (period not 0.8 s , then $0 / 2$)
$\begin{array}{lll}\text { (b) } & \text { (i) } & \text { (induced) e.m.f. is proportional to } \\ & \text { rate of change/cutting of (magnetic) flux (linkage) } & \text { M1 } \\ & \text { A1 }\end{array}$
(ii) a current is induced in the coil M1
as magnet moves in coil A1
current in resistor gives rise to a heating effect M1 thermal energy is derived from energy of oscillation of the magnet A1

4 (a) (i) zero field (strength) inside spheres
(ii) either field strength is zero
or the fields are in opposite directions M1 at a point between the spheres A1
(b) (i) field strength is (-) potential gradient (not V / x)
$\begin{array}{lll}\text { (ii) 1. field strength has maximum value } & \text { B1 } \\ \text { at } x=11.4 \mathrm{~cm} & \text { B1 }\end{array}$
2. field strength is zero
either at $x=7.9 \mathrm{~cm}$ (allow $\pm 0.3 \mathrm{~cm}$)
or at 0 to 1.4 cm or 11.4 cm to 12 cm
B1

5 (a) (i) $B q v(\sin \theta)$ or $B q v(\cos \theta)$
B1
(ii) $q E$

B1
$\begin{array}{ll}\text { (b) } F_{\mathrm{B}} \text { must be opposite in direction to } F_{\mathrm{E}} & \text { B1 } \\ \text { so magnetic field into plane of paper } & \text { B1 }\end{array}$

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - October/November 2011	9702	42

6
(a) (i) period $=1 / 50$ C1

$$
t_{1}=0.03 \mathrm{~s}
$$

(ii) peak voltage $=17.0 \mathrm{~V}$
(iii) r.m.s. voltage $=17.0 / \sqrt{ } 2$

$$
=12.0 \mathrm{~V}
$$

(iv) mean voltage $=0$
A1

$$
\text { (b) } \begin{aligned}
\text { power } & =V^{2} / R \\
& =12^{2} / 2.4 \\
& =60 \mathrm{~W}
\end{aligned}
$$

C1

7 (a) each line represents photon of specific energy
photon emitted as a result of energy change of electron
M1
specific energy changes so discrete levels
(b) (i) arrow from -0.85 eV level to -1.5 eV level B1

$$
\text { (ii) } \begin{aligned}
\Delta E & =h c / \lambda \\
& =(1.5-0.85) \times 1.6 \times 10^{-19} \\
& =1.04 \times 10^{-19} \mathrm{~J} \\
& =\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(1.04 \times 10^{-19}\right) \\
& =1.9 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

C1
(c) spectrum appears as continuous spectrum crossed by dark lines B1
two dark lines B1
electrons in gas absorb photons with energies equal to the excitation energies M1
light photons re-emitted in all directions A1

8 (a) (i) time for initial number of nuclei/activityto reduce to one half of its initial valueA1

(ii) $\lambda=\ln 2 /(24.8 \times 24 \times 3600)$

$$
=3.23 \times 10^{-7} \mathrm{~s}^{-1}
$$

(b) (i) $A=\lambda N$

$$
N=1.15 \times 10^{13}
$$

(ii) $N=N_{0} \mathrm{e}^{-\lambda t}$

$$
\begin{aligned}
& =1.15 \times 10^{13} \times \exp (-\{\ln 2 \times 30\} / 24.8) \\
& =4.97 \times 10^{12}
\end{aligned}
$$

(c) ratio $=\left(4.97 \times 10^{12}\right) /\left(1.15 \times 10^{13}-4.97 \times 10^{12}\right)$

$$
=0.76
$$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	42

Section B

9 (a) e.g. reduced gain increased stability greater bandwidth or less distortion
(allow any two sensible suggestions, 1 each, max 2)
B2
(b) (i) V^{-}connected to midpoint between resistors

B1
$V_{\text {Out }}$ clear and input to V^{+}clear
B1
$V_{\text {OUT }}$ clear and inp
(ii) gain $=1+R_{\mathrm{F}} / R$
$15=1+12000 / R$

C1
$R=860 \Omega$
A1
$\begin{array}{ll}\text { (c) graph: } \begin{array}{l}\text { straight line from }(0,0) \text { to }(0.6,9.0) \\ \text { straight line from }(0.6,9.0)\end{array} \text { to }(1.0,9.0) & \text { B1 } \\ \text { B1 }\end{array}$
$\begin{array}{llr}\text { (d) either } & \begin{array}{l}\text { relay can be used to switch a large current/voltage } \\ \text { output current of op-amp is a few mA/very small }\end{array} & \text { M1 } \\ & \text { A1 }\end{array}$
or relay can be used as a remote switch
for inhospitable region/avoids using long heavy cables

10 (a) e.g. large bandwidth/carries more information
low attenuation of signal
low cost
smaller diameter, easier handling, easier storage, less weight high security/no crosstalk low noise/no EM interference
(allow any four sensible suggestions, 1 each, max 4)
B4
(b) (i) infra-red B1
(ii) lower attenuation than for visible light
(c) (i) gain $/ \mathrm{dB}=10 \lg \left(P_{2} / P_{1}\right)$
$26=10 \lg \left(P_{2} / 9.3 \times 10^{-6}\right)$
$P_{2}=3.7 \times 10^{-3} \mathrm{~W}$
(ii) power loss along fibre $=30 \times 0.2=6.0 \mathrm{~dB}$
either $6=10 \lg \left(P / 3.7 \times 10^{-3}\right)$ or $6 \mathrm{~dB}=4 \times 3.7 \times 10^{-3}$
or $\quad 32=10 \lg \left(P / 9.3 \times 10^{-6}\right)$
input power $=1.5 \times 10^{-2} \mathrm{~W}$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	$\mathbf{4 2}$

$\begin{array}{lll}11 & \text { (a) } & \text { (i) switch } \\ \text { so that one aerial can be used for transmission and reception } & \text { M1 }\end{array}$
$\begin{array}{lr}\text { (ii) tuning circuit } & \text { M1 } \\ \text { to select (one) carrier frequency (and reject others) } & \text { A1 }\end{array}$
(iii) analogue-to-digital converter/ADC M1
converts microphone output to a digital signal
A1
(iv) (a.f.) amplifier (not r.f. amplifier) M1
(iv) (a.f.) amplifier (not r.f. amplifier)
to increase (power of) signal to drive the loudspeaker

A1
(b) e.g. short aerial so easy to handle short range so less interference between base stations larger waveband so more carrier frequencies
(any two sensible suggestions, 1 each, max 2)
B2

