UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	43

Section A

1 (a) (i) weight =
$$GMm/r^2$$
 C1
= $(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^6)^2$ C1
= 5.20 N A1 [3]

(ii) potential energy =
$$-GMm/r$$
 C1
= $-(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^{6})$ M1
= -1.77×10^{7} J A0 [2]

(b) either
$$\frac{1}{2}mv^2 = 1.77 \times 10^7$$
 C1
 $v^2 = (1.77 \times 10^7 \times 2)/1.40$ C1
 $v = 5.03 \times 10^3 \,\mathrm{m\,s^{-1}}$ A1
or $\frac{1}{2}mv^2 = GMm/r$ (C1)
 $v^2 = (2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23})/(6.79 \times 10^6/2)$ (C1)
 $v = 5.02 \times 10^3 \,\mathrm{m\,s^{-1}}$ (A1) [3]

(c) (i)
$$\frac{1}{2} \times 2 \times 1.66 \times 10^{-27} \times (5.03 \times 10^{3})^{2} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$$
 C1

 $T = 2030 \text{ K}$ A1 [2]

- 2 (a) temperature scale calibrated assuming linear change of property with temperature B1 neither property varies linearly with temperature B1 [2]
 - (b) (i) does not depend on the property of a substance B1 [1]
 - (ii) temperature at which atoms have minimum/zero energy B1 [1]
 - (c) (i) 323.15 K A1 [1]
 - (ii) 30.00 K A1 [1]

	raye s		Mark Scheme. Teachers Version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9702	43	
3	` '		tion proportional to displacement/distance from fixed poposite directions/directed towards fixed point	oint	M1 A1	[2]
	(b) e		= $\frac{1}{2}m\omega^2x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1×10^{-5} J		C1 C1 A1	[3]
	(c) (i		aximum displacement ve rest position		M1 A1	[2]
	(ii	i) acce	eleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g		C1	
		9.81 <i>x</i> ₀ =	= $(2\pi \times 4.5)^2 \times x_0$ 1.2 × 10 ⁻² m		A1	[2]
4		sepa block prod tunir smo prev timir	ng energy arating charge king d.c. ucing electrical oscillations ag circuits othing enting sparks ag circuits sensible suggestions, 1 each, max 2)		B2	[2]
	(b) (i		induced) on opposite plate of C₁ narge conservation, charges are −Q, +Q, −Q, +Q, −Q		B1 B1	[2]
	(ii	Q/C	p.d. $V = V_1 + V_2 + V_3$ = $Q/C_1 + Q/C_2 + Q/C_3$ = $1/C_1 + 1/C_2 + 1/C_3$		B1 B1 A0	[2]
	(c) (i) ener	gy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}$ QV and C = Q/V = $\frac{1}{2} \times 12 \times 10^{-6} \times 9.0^2$ = 4.9×10^{-4} J		C1 A1	[2]
	/: :	i) one	gy dissipated in (resistance of) wire/as a spark			
	(ii	ı, ener	gy dissipated in (resistance of) wire/as a spark		B1	[1]

Mark Scheme: Teachers' version

Syllabus

Paper

		•		GCE AS/A LEVEL – October/November 2011	9702	43	
5	(a)			onnected correctly (to left & right) nected correctly (to top & bottom)		B1 B1	[2]
	(b)	_	grea	er supplied on every half-cycle iter <u>average/mean</u> power sible suggestion, 1 mark)		B1	[1]
	(c)	(i)	redu	action in the variation of the output voltage/current		B1	[1]
		(ii)		er capacitance produces more smoothing er product <i>RC</i> larger		M1	
			or	for the same load		A1	[2]
6	(a)	field	unit of magnetic flux density field normal to (straight) conductor carrying current of 1 A force per unit length is 1 N m ⁻¹			B1 M1 A1	[3]
	(b)	(i)	(and	e on particle always normal to direction of motion I speed of particle is constant) netic force provides the centripetal force		M1 A1	[2]
		(ii)		/r = Bqv mv/Bq		M1 A0	[1]
	(c)	(i)		momentum/speed is becoming less ne radius is becoming smaller		M1 A1	[2]
		(ii)		spirals are in opposite directions so oppositely charged		M1 A1	[2]
				equal <u>initial</u> radii so equal (initial) speeds		M1 A1	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

	Page 5		Mark Scheme, reachers version Synabus		Paper			
				GCE AS/A LEVEL – October/November 2011 9702				
7	(a)	(i)	•	•	ntum of energy agnetic radiation		M1 A1	[2]
		(ii)	<u>mini</u>	<u>mum</u> e	nergy to cause emission of an electron (from su	ırface)	B1	[1]
	(b)	(i)		$d = \Phi + \Phi$			M1 A1	[2]
		(ii)		or or	when $1/\lambda = 0$, $\Phi = -E_{\text{max}}$ evidence of use of <i>x</i> -axis intercept from graph chooses point close to the line and substitutes E_{max} into $hc/\lambda = \Phi + E_{\text{max}}$ 0×10^{-19} J (allow $\pm 0.2 \times 10^{-19}$ J)	s values of $1/\lambda$ a	and C1 A1	[2]
			2.	either	gradient of graph is $1/hc$ gradient = $4.80 \times 10^{24} \rightarrow 5.06 \times 10^{24}$ $h = 1/(gradient \times 3.0 \times 10^8)$		C1 M1	
			(Allo	not all	= $6.6 \times 10^{-34} \mathrm{Js} \to 6.9 \times 10^{-34} \mathrm{Js}$ chooses point close to the line and substitutes E_{max} into $hc/\lambda = \Phi + E_{\mathrm{max}}$ values of $1/\lambda$ and E_{max} are correct within half a $h = 6.6 \times 10^{-34} \mathrm{Js} \to 6.9 \times 10^{-34} \mathrm{Js}$ credit for the correct use of any appropriate method conviction of the correct use of any appropriate method of the correct use of the c	square hod)	(C1) (M1) (A1)	[3]
8	(a)	(i)	•	ability ounit tim	of decay (of a nucleus) e		M1 A1	[2]
		(ii)	λ =	= In 2 In 2/(3 .1 × 10	.82 × 24 × 3600) ⁶ s ⁻¹		M1 A0	[1]
	(b)	200 N :	= 9.5	2.1 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×			C1 C1	
		rati	o = ;	(2.5 × 1 2.6 × 1	10 ²⁵)/(9.5 × 10 ⁷) 0 ¹⁷		A1	[3]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	43

Section B

9	(a) any value greater than, or equal to, $5\mathrm{k}\Omega$	B1	[1]
	(b) (i) 'positive' shown in correct position	B1	[1]
	(ii) $V^+ = (500/2200) \times 4.5$ $\approx 1 \text{ V}$ $V^- > V^+$ so output is negative green LED on, (red LED off) (allow full ecf of incorrect value of V^+)	B1 M1 A1	[3]
	(iii) either V^+ increases or $V^+ > V^-$ green LED off, red LED on	M1 A1	[2]
10	quartz/piezo-electric crystal p.d. across crystal causes either centres of (+) and (-) charg or crystal to change shape alternating p.d. (in ultrasound frequency range) causes crystal to	B1	
	crystal cut to produce resonance when crystal made to vibrate by ultrasound wave alternating p.d. produced across the crystal	B1 M1 A1	[6]
11	1 (a) sharpness: ease with which edges of structures can be secontrast: difference in degree of blackening between structures.		[2]
	(b) (i) $I = I_0 e^{-\mu x}$ $I/I_0 = \exp(-0.20 \times 8)$	C1	
	= 0.20	A1	[2]
	(ii) $I/I_0 = \exp(-\mu_1 \times x_1) \times \exp(-\mu_2 \times x_2)$ (could be three ter $I/I_0 = \exp(-0.20 \times 4) \times \exp(-12 \times 4)$ $I/I_0 = 6.4 \times 10^{-22}$ or $I/I_0 \approx 0$	C1 C1 A1	[3]
	(c) (i) sharpness unknown/no	B1	[1]
	(ii) contrast good/yes (ecf from (b))	B1	[1]

			GCE AS/A LEVEL – October/November 2011	9702	43	
12	(a)	so in e.g. lowe so le e.g. UHF so m	nust be line-of-sight/short handset aerial		(M1) (A1) (M1) (A1) (M1) (A1)	F.4.1
		(any two	sensible suggestions with explanation, max 4)		B4	[4]
	(b)	monitors relayed f	r at cellular exchange the signal power rom several base stations call to base station with strongest signal		B1 B1 B1 B1	[4]

Syllabus

Paper

Mark Scheme: Teachers' version