MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	43

Section A

1 (a) (i) weight $=G M m / r^{2}$
C1
C1 A1

$$
\text { (ii) } \begin{aligned}
\text { potential energy } & =-G M m / r \\
& =-\left(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40\right) /\left(1 / 2 \times 6.79 \times 10^{6}\right) \\
& =-1.77 \times 10^{7} \mathrm{~J}
\end{aligned}
$$ C1

M1

A0
(b) either $\quad 1 / 2 m v^{2}=1.77 \times 10^{7}$

C1
$v^{2}=\left(1.77 \times 10^{7} \times 2\right) / 1.40 \quad \mathrm{C} 1$
$v=5.03 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
or $\quad \begin{aligned} & 1 / 2 m v^{2}=G M m / r \\ & v^{2}=\left(2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23}\right) /\left(6.79 \times 10^{6} / 2\right) \\ & v=5.02 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}\end{aligned}$
(C1)
(c) (i) $1 / 2 \times 2 \times 1.66 \times 10^{-27} \times\left(5.03 \times 10^{3}\right)^{2}=\frac{3}{2} \times 1.38 \times 10^{-23} \times T$ C1
$T=2030 \mathrm{~K}$
A1
$\begin{array}{llr}\text { (ii) } \begin{array}{ll}\text { either } & \text { because there is a range of speeds } \\ & \text { some molecules have a higher speed } \\ \text { or } & \text { some escape from point above planet surface }\end{array} & \text { M1 } \\ & \text { so initial potential energy is higher } & \text { A1 } \\ & \text { (M1) }\end{array}$

2 (a) temperature scale calibrated assuming linear change of property with temperature neither property varies linearly with temperature B1
(b) (i) does not depend on the property of a substance
(ii) temperature at which atoms have minimum/zero energy
(c) (i) 323.15 K
(ii) 30.00 K

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	43

3 (a) acceleration proportional to displacement/distance from fixed point
(b) energy $=1 / 2 m \omega^{2} x_{0}{ }^{2}$ and $\omega=2 \pi f$

$$
\begin{aligned}
& =1 / 2 \times 5.8 \times 10^{-3} \times(2 \pi \times 4.5)^{2} \times\left(3.0 \times 10^{-3}\right)^{2} \\
& =2.1 \times 10^{-5} \mathrm{~J}
\end{aligned}
$$

C1
(c) (i) at maximum displacement
above rest position
(ii) acceleration $=(-) \omega^{2} x_{0}$ and acceleration $=9.81$ or g
$9.81=(2 \pi \times 4.5)^{2} \times x_{0}$
$x_{0}=1.2 \times 10^{-2} \mathrm{~m}$

4 (a) e.g. storing energy
separating charge
blocking d.c.
producing electrical oscillations
tuning circuits
smoothing
preventing sparks
timing circuits
(any two sensible suggestions, 1 each, max 2)
B2
(b) (i) $-Q$ (induced) on opposite plate of C_{1}

B1
by charge conservation, charges are $-Q,+Q,-Q,+Q,-Q$
B1
(ii) total p.d. $V=V_{1}+V_{2}+V_{3}$

B1
$Q / C=Q / C_{1}+Q / C_{2}+Q / C_{3}$
B1
$1 / C=1 / C_{1}+1 / C_{2}+1 / C_{3}$
A0
(c) (i) energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $C=Q / V$ C1

$$
\begin{aligned}
& =1 / 2 \times 12 \times 10^{-6} \times 9.0^{2} \\
& =4.9 \times 10^{-4} \mathrm{~J}
\end{aligned}
$$

(ii) energy dissipated in (resistance of) wire/as a spark

B1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	43

5 (a) supply connected correctly (to left \& right) B1
load connected correctly (to top \& bottom) B1
(b) e.g. power supplied on every half-cycle greater average/mean power
(any sensible suggestion, 1 mark) B1
(c) (i) reduction in the variation of the output voltage/current B1
(ii) larger capacitance produces more smoothing M1
either product $R C$ largeror for the same loadA1
6 (a) unit of magnetic flux density B1
field normal to (straight) conductor carrying current of 1 A M1
force per unit length is $1 \mathrm{Nm}^{-1}$ A1
(b) (i) force on particle always normal to direction of motion M1(and speed of particle is constant)magnetic force provides the centripetal forceA1
(ii) $m v^{2} / r=B q v$ M1
$r=m v / B q$ A0
(c) (i) the momentum/speed is becoming less M1
so the radius is becoming smaller A1
(ii) 1. spirals are in opposite directions M1
so oppositely charged A1
2. equal initial radii M1
so equal (initial) speeds A1
[2]
[3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	43

7 (a) (i) packet/quantum of energy M1
of electromagnetic radiation A1
(ii) minimum energy to cause emission of an electron (from surface)
(b) (i) $h c / \lambda=\Phi+E_{\max } \quad$ M1
c and h explained A1
(ii) 1. either when $1 / \lambda=0, \Phi=-E_{\text {max }}$
or evidence of use of x-axis intercept from graph
or chooses point close to the line and substitutes values of $1 / \lambda$ and $E_{\text {max }}$ into $h c / \lambda=\Phi+E_{\text {max }}$
$\Phi=4.0 \times 10^{-19} \mathrm{~J}$ (allow $\pm 0.2 \times 10^{-19} \mathrm{~J}$)
2. either gradient of graph is $1 / \mathrm{hc}$
gradient $=4.80 \times 10^{24} \rightarrow 5.06 \times 10^{24}$
$h=1 /\left(\right.$ gradient $\left.\times 3.0 \times 10^{8}\right)$ $=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s} \rightarrow 6.9 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
or chooses point close to the line and substitutes values of $1 / \lambda$ and $E_{\text {max }}$ into $h c / \lambda=\Phi+E_{\text {max }}$
values of $1 / \lambda$ and $E_{\max }$ are correct within half a square
$h=6.6 \times 10^{-34} \mathrm{Js} \rightarrow 6.9 \times 10^{-34} \mathrm{Js}$
(Allow full credit for the correct use of any appropriate method)
(Do not allow 'circular' calculations in part 2 that lead to the same value of Planck constant that was substituted in part 1)

8 (a) (i) probability of decay (of a nucleus)
per unit time
(ii) $\lambda t t_{1 / 2}=\ln 2$
$\lambda=\ln 2 /(3.82 \times 24 \times 3600)$
$=2.1 \times 10^{-6} \mathrm{~s}^{-1}$
(b) $A=\lambda N$

C1
$200=2.1 \times 10^{-6} \times N$
C1
$N=9.5 \times 10^{7}$
ratio $=\left(2.5 \times 10^{25}\right) /\left(9.5 \times 10^{7}\right)$

$$
=2.6 \times 10^{17}
$$

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	43

Section B

9 (a) any value greater than, or equal to, $5 \mathrm{k} \Omega$
B1 [1]
(b) (i) 'positive' shown in correct position

B1
(ii) $V^{+}=(500 / 2200) \times 4.5$
$\approx 1 \mathrm{~V}$
B1
$V^{-}>V^{+}$so output is negative M1
green LED on, (red LED off) A1 (allow full ecf of incorrect value of V^{+})
(iii) either V^{+}increases or $V^{+}>V^{-}$M1
green LED off, red LED on
A1

10 quartz/piezo-electric crystal B1
p.d. across crystal causes either centres of (+) and (-) charge to move or crystal to change shape

B1
alternating p.d. (in ultrasound frequency range) causes crystal to vibrate B1
crystal cut to produce resonance
B1
when crystal made to vibrate by ultrasound wave M1
alternating p.d. produced across the crystal
A1

11 (a) sharpness: ease with which edges of structures can be seen
B1
contrast: difference in degree of blackening between structures
(b) (i) $I=I_{0} \mathrm{e}^{-\mu x}$

C1
$I / I_{0}=\exp (-0.20 \times 8)$
$=0.20$
A1
(ii) $I / I_{0}=\exp \left(-\mu_{1} \times x_{1}\right) \times \exp \left(-\mu_{2} \times x_{2}\right)$ (could be three terms) C1
$I / I_{0}=\exp (-0.20 \times 4) \times \exp (-12 \times 4)$
C1
$I / I_{0}=6.4 \times 10^{-22}$ or $I / I_{0} \approx 0$
(c) (i) sharpness unknown/no
(ii) contrast good/yes (ecf from (b))

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9702	43

12 (a) e.g. carrier frequencies can be re-used (without interference) (M1)
so increased number of handsets can be used (A1)
e.g. lower power transmitters (M1)
so less interference (A1)
e.g. UHF used (M1)
so must be line-of-sight/short handset aerial (A1)
(any two sensible suggestions with explanation, max 4) B4
(b) computer at cellular exchange B1
monitors the signal power B1
relayed from several base stations B1
switches call to base station with strongest signal B1[4]

