MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	21

1 (a) (i) acceleration = change in velocity / time (taken)
or acceleration = rate of change of velocity
B1 [1]
(ii) a body continues at constant velocity unless acted on by a resultant force

B1
(b) (i) distance is represented by the area under graph

C1
distance $=1 / 2 \times 29.5 \times 3=44.3 \mathrm{~m}$ (accept 43.5 m for 29 to 45 m for 30)
A1
(ii) resultant force $=$ weight - frictional force \quad B1 frictional force increases with speed B1 at start frictional force $=0 /$ at end weight $=$ frictional force \quad B1
(iii) 1. frictional force increases B1
2. frictional force (constant) and then decreases

B1
(iv) 1. acceleration $=\left(v_{2}-v_{1}\right) / t=(20-50) /(17-15)$ C1
$=(-) 15 \mathrm{~m} \mathrm{~s}^{-2}$
A1
2. $\begin{array}{ll}W-F=m a & \text { C1 } \\ W=95 \times 9.81(=932) & \mathrm{C} 1\end{array}$
$F=(95 \times 15)+932=2400(2360)(2357) \mathrm{N}$
A1

2 (a) resistance $=$ potential difference / current
(b) (i) metal wire in series with power supply and ammeter \quad B1
voltmeter in parallel with metal wire B1
rheostat in series with power supply or potential divider arrangement
or variable power supply
(ii) 1. intercept on graph

B1
2. scatter of readings about the best fit line
(iii) correction for zero error explained

B1
use of V and corrected I values from graph
C1
resistance $=V / I=22 .(2) \Omega$ [e.g. $4.0 / 0.18]$ A1
(c) $R=6.8 / 0.64=10.625$

$$
\begin{align*}
\% R & =\% V+\% I \\
& =(0.1 / 6.8) \times 100+(0.01 / 0.64) \times 100 \tag{C1}\\
& =1.47 \%+1.56 \% \\
\Delta R & =0.0303 \times 10.625=0.32 \Omega \\
R & =10.6 \pm 0.3 \Omega
\end{align*}
$$

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	21

3 (a) pressure = force / area
(b) molecules collide with object / surface and rebound B1
molecules have change in momentum hence force acts B1
fewer molecules per unit volume on top of mountain / temperature is less hence lower speed of molecules B1
hence less pressure A0
(c) (i) $\rho=m / V$

$$
W=V \rho g=0.25 \times 0.45 \times 9.81 \times 13600 \quad C 1
$$

$$
=15000(15009) \mathrm{N}
$$

$=15000(15009) \mathrm{N}$ A1
(ii) $p=W / A($ or using $p=\rho g h)=15009 / 0.45$

$$
=3.3 \times 10^{4} \mathrm{~Pa}
$$

(iii) pressure will be greater due to the air pressure (acting on the surface of the liquid)

4 (a) waves pass through the elements / gaps / slits in the gratingspread into geometric shadow
(b) (i) 1. displacements add to give resultant displacement $\quad \begin{array}{ll}\text { B1 } \\ & \text { each wavelength travels the same path difference or are in phase }\end{array}$ hence produce a maximum A0
(ii) $n \lambda=d \sin \theta \quad$ C1
$N=\sin 61^{\circ} /\left(2 \times 625 \times 10^{-9}\right)=7.0 \times 10^{5}$ A1
(iii) $n \lambda=2 \times 625$ is a constant (1250)
$n=1 \rightarrow \lambda=1250$ outside visible
$n=3 \rightarrow \lambda=417$ in visible
$n=4 \rightarrow \lambda=312.5$ outside visible
$\lambda=420 \mathrm{~nm}$

$$
0 \text { tevern }
$$

5 (a) when the load is removed then the wire / body object does not return to its original shape / length

B1
(b) (i) stress $=$ force $/$ area \quad C1
$F=220 \times 10^{6} \times 1.54 \times 10^{-6}=340(338.8) \mathrm{N}$
A1
(ii) $\begin{array}{ll}E=(F \times l) /(A \times e) & \text { C1 } \\ e=\left(90 \times 10^{6}\right) \times 1.75 /\left(1.2 \times 10^{11}\right)=1.31 \times 10^{-3} \mathrm{~m} & \text { A1 }\end{array}$
$e=\left(90 \times 10^{6}\right) \times 1.75 /\left(1.2 \times 10^{11}\right)=1.31 \times 10^{-3} \mathrm{~m}$
A1
(c) the stress is no longer proportional to the extension

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	21

$\begin{array}{ll}\text { (a) } 92 \text { protons in the nucleus and } 92 \text { electrons around nucleus } & \text { B1 } \\ 143 \text { neutrons (in the nucleus) } & \text { B1 }\end{array}$
(b) (i) α-particle travels short distance in air B1
(ii) very small proportion in backwards direction / large angles
B1 majority pass through with no /small deflections B1 either most of mass is in very small volume (nucleus) and is charged or most of atom is empty space

B1
(c) $I=Q / t$

C1
$n / t=\left(1.5 \times 10^{-12}\right) /\left(2 \times 1.6 \times 10^{-19}\right)$
C1
$n / t=4.7 \times 10^{6} \mathrm{~s}^{-1}$ A1

