MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2			Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2012	9702	23	
1	(a)) spacing =		= 380 or 3.8 × 10 ² pm		B1	[1]
	(b)	time = 24 time = 0.0		4 × 3600 086 (0.0864)Ms		B1	[1]
	(c)	time	e = di	stance / speed = $\frac{1.5 \times 10^{11}}{3 \times 10^8}$		C1	
			= 5	00 (s) = 8.3 min		A1	[2]
	(d)	momentum and weight					[1]
	(e)	(i)	arro	w to the right of plane direction (about 4° to 24°)		B1	[1]
		(ii)	or us	e diagram drawn se of cosine formula $v^2 = 250^2 + 36^2 - 2 \times 250 \times 36 \times cos$ solving $v = [(36\cos 45^\circ)^2 + (250 - 36\sin 45^\circ)^2]^{1/2}$	s 45°	C1	
			allov	Itant velocity = 226 (220 – 240 for scale diagram)m s ⁻¹ v one mark for values 210 to 219 or 241 to 250 m s ⁻¹ se of formula (v^2 = 51068) v = 230 (226)m s ⁻¹		A1	[2]
2	(a)	(i)		elerations (A to B and B to C) are same magnitude elerations (A to B and B to C) are opposite directions		B1	
			or both accelerations are toward B (A to B and B to C) the component of the weight down the slope provides the acceleration	B1 B1	[3]		
		(ii)		eleration = $g \sin 15^{\circ}$ 0 + $\frac{1}{2} at^2$ s = 0.26 / sin 15° = 1.0		C1 C1	
			<i>t</i> ² =	$\frac{1.0 \times 2}{9.8 \times \sin 15^{\circ}}$ $t = 0.89 \mathrm{s}$		A1	[3]
		(iii)	v = 2	$0 + g \sin 15t$ or $v^2 = 0 + 2g \sin 15 \times 1.0$ 2.26 m s ⁻¹ ng loss of GPE = gain KE can score full marks)		C1 A1	[2]
	(b)	b) loss of GPE at A = gain in GPE at C or loss of KE at B = gain in GPE at				B1	
	· –			$h_2 = 0.26 \text{ m or } \frac{1}{2} mv^2 = mgh$ $h_2 = 0.5 \times (2.26)^2 / 9.81 = 0.26 \text{ m}$ / sin 30° = 0.52 m	6 m	A1	[2]
3	(a)			the rate of doing work or power = work done / time (take energy transferred / time (taken)	en) or	B1	[1]
	(b)	(i)	resu cons	ne speed increases drag / air resistance increases Itant force reduces hence acceleration is less stant speed when resultant force is zero w one mark for speed increases and acceleration decrea	ases)	B1 B1 B1	[3]

	Page 3	6	Mark Scheme		Syllabus	Paper		
			GCE AS/A LEVEL – October/November 2012 9702			23		
	(ii) force from cyclist = drag foP = 12 × 48P = 576 W			rag force / res	istive force		B1 M1 A0	[2]
	(iii) tangent drawn at speed = 8.0 m s ⁻¹ gradient values that show acceleration between 0.44 to 0.48 m s ⁻²			8 m s ⁻²	M1 A1	[2]		
	(iv)	(iv) $F - R = ma$ $600 / 8 - R = 80 \times 0.5$ [using $P = 576$] $576 / 8 - R = 80 \times 0.5$ R = 75 - 40 = 35 N $R = 72 - 40 = 32 N$		– <i>R</i> = 80 × 0.5	C1 C1 A1	[3]		
	(v)	R/v	2 m s ^{–1} drag is 48 ⁄ calculated as 4 consistent respo	and 4 or 4.4	rag is 35 or 32 N er <i>R</i> is proportional to <i>v</i> o	r not	B1	[1]
4	p.d	 (a) e.m.f. = chemical energy to electrical energy p.d. = electrical energy to thermal energy idea of per unit charge 			M1 M1 A1	[3]		
	(b)	I (R	+ <i>r</i>) or <i>I</i> = <i>E</i> / (<i>R</i>	+ <i>r</i>) (any su	bject)		B1	[1]
	(c) (i)	E = :	5.8 V				B1	[1]
	(ii)		$5.8 = 4 + 1.0 \times r$		calculation with values fr	om graph	C1 A1	[2]
	(d) (i)		VI 2.9 × 1.6 = 4.6 (4	4.64)W			C1 A1	[2]
	(ii) power from battery = 1.6 × 5.8 = 9.28 or efficiency = <i>VI</i> / <i>EI</i> efficiency = (4.64 / 9.28) × 100 = 50 % or (2.9 / 5.8) × 100 = 50%				C1 A1	[2]		
5	(a) trav	vel thr	rough a vacuum	/ free space			B1	[1]
	(b) (i)	C : r	name: name: name:	microwaves ultra-violet / X –rays	wavelength: 10 ⁻⁴ to UV wavelength: 10 ⁻⁷ to wavelength: 10 ⁻⁹ to	10 ^{−9} m	B1 B1 B1	[3]
	(ii)	f =	$\frac{3 \times 10^8}{500 \times 10^{-9}}$				C1	
		f = 6	6(.0) × 10 ¹⁴ Hz				A1	[2]

	Page 4		ŀ	Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2012	9702	23	
	(c)			ations are in one direction pendicular to direction of propagation / energy transfer			
		or good sketch showing this				A1	[2]
6	(a)	(i)	elec	tron		B1	[1]
		 (ii) any two: can be deflected by electric and magnetic fields or negatively charged / absorbed by few (1 – 4)mm of aluminum / 0.5 to 2 m or metres for range ir speed up to 0.99c / range of speeds / energies 			air /		
			·			B2	[2]
				ay occurs and cannot be affected by external / environm vo stated factors such as chemical / pressure / temperat		B1	[1]
	(b)			or superscript numbers for subscript numbers		B1 B1	[2]
	(c)	ene	ergy =	$5.7 \times 10^3 \times 1.6 \times 10^{-19} (= 9.12 \times 10^{-16} \text{ J})$		C1	
		v ² =	= <mark>2 ×</mark> 9.	$\frac{9.12 \times 10^{-16}}{11 \times 10^{-31}}$		C1	
		v =	= 4.5 >	$\times 10^7 \mathrm{ms^{-1}}$		A1	[3]
	(d)	1 n (sp	eutroi ecial	e 1 proton and 1 electron n in hydrogen-2 and 2 neutrons in hydrogen-3 case: for one mark 'same number of protons / atomic nu number of neutrons')	mber	B1 B1	[2]