MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/23
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	23

1 (a) spacing $=380$ or $3.8 \times 10^{2} \mathrm{pm}$
(b) time $=24 \times 3600$
time $=0.086(0.0864) \mathrm{Ms}$
(c) time $=$ distance $/$ speed $=\frac{1.5 \times 10^{11}}{3 \times 10^{8}}$

$$
\begin{equation*}
=500(\mathrm{~s})=8.3 \mathrm{~min} \tag{A1}
\end{equation*}
$$

(d) momentum and weight
(e) (i) arrow to the right of plane direction (about 4° to 24°)
(ii) scale diagram drawn
or use of cosine formula $v^{2}=250^{2}+36^{2}-2 \times 250 \times 36 \times \cos 45^{\circ}$
or resolving $v=\left[\left(36 \cos 45^{\circ}\right)^{2}+\left(250-36 \sin 45^{\circ}\right)^{2}\right]^{1 / 2}$
resultant velocity $=226(220-240$ for scale diagram $) \mathrm{m} \mathrm{s}^{-1}$
allow one mark for values 210 to 219 or 241 to $250 \mathrm{~m} \mathrm{~s}^{-1}$
or use of formula $\left(v^{2}=51068\right) v=230(226) \mathrm{m} \mathrm{s}^{-1}$
A1

2 (a) (i) accelerations (A to B and B to C) are same magnitude
accelerations (A to B and B to C) are opposite directions
or both accelerations are toward B
(A to B and B to C) the component of the weight down the slope provides the acceleration
(ii) acceleration $=g \sin 15^{\circ}$

C1
$s=0+1 / 2 a t^{2} \quad s=0.26 / \sin 15^{\circ}=1.0$
$t^{2}=\frac{1.0 \times 2}{9.8 \times \sin 15^{\circ}} \quad t=0.89 \mathrm{~s}$
A1
(iii) $v=0+g \sin 15 t$ or $v^{2}=0+2 g \sin 15 \times 1.0$

C1
$v=2.26 \mathrm{~m} \mathrm{~s}^{-1}$
A1
(using loss of GPE = gain KE can score full marks)
(b) loss of GPE at $\mathrm{A}=$ gain in GPE at C or loss of KE at $\mathrm{B}=$ gain in GPE at C
$h_{1}=h_{2}=0.26 \mathrm{~m}$ or $1 / 2 m v^{2}=m g h \quad h_{2}=0.5 \times(2.26)^{2} / 9.81=0.26 \mathrm{~m}$ $x=0.26 / \sin 30^{\circ}=0.52 \mathrm{~m}$

3 (a) power is the rate of doing work or power = work done / time (taken) or power = energy transferred / time (taken)
(b) (i) as the speed increases drag / air resistance increases
resultant force reduces hence acceleration is less
constant speed when resultant force is zero

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	23

(ii) force from cyclist $=$ drag force $/$ resistive force \quad B1
$P=12 \times 48 \quad$ M1
$P=576 \mathrm{~W}$
A0
[2]
(iii) tangent drawn at speed $=8.0 \mathrm{~m} \mathrm{~s}^{-1} \quad$ M1
gradient values that show acceleration between 0.44 to $0.48 \mathrm{~m} \mathrm{~s}^{-2}$
(iv) $F-R=m a$
$600 / 8-R=80 \times 0.5 \quad[$ using $P=576] 576 / 8-R=80 \times 0.5$
$R=72-40=32 \mathrm{~N}$ $R=75-40=35 \mathrm{~N}$

C1
C1 A1
(v) at $12 \mathrm{~m} \mathrm{~s}^{-1}$ drag is 48 N , at $8 \mathrm{~m} \mathrm{~s}^{-1}$ drag is 35 or 32 N
R / v calculated as 4 and 4 or 4.4
and consistent response for whether R is proportional to v or not
B1

4 (a) e.m.f. = chemical energy to electrical energy
M1
p.d. = electrical energy to thermal energy

M1
idea of per unit charge
A1
(b) $E=I(R+r)$ or $I=E /(R+r) \quad$ (any subject)

B1
(c) (i) $E=5.8 \mathrm{~V}$

B1
(ii) evidence of gradient calculation or calculation with values from graph

$$
\text { e.g. } 5.8=4+1.0 \times r
$$

C1
$r=1.8 \Omega$ A1
(d) (i) $P=V I$

C1
$P=2.9 \times 1.6=4.6(4.64) \mathrm{W}$
(ii) power from battery $=1.6 \times 5.8=9.28$ or efficiency $=V I / E I$

C1
efficiency $=(4.64 / 9.28) \times 100=50 \%$ or $(2.9 / 5.8) \times 100=50 \%$
A1

5 (a) travel through a vacuum / free space
(b)

B : name:	microwaves	wavelength: 10^{-4} to $10^{-1} \mathrm{~m}$	B
C: name:	ultra-violet $/$ UV	wavelength: 10^{-7} to $10^{-9} \mathrm{~m}$	B
F: name:	X -rays	wavelength: 10^{-9} to $10^{-12} \mathrm{~m}$	B

F : name:
X-rays
wavelength: 10^{-9} to $10^{-12} \mathrm{~m}$
B1
(ii) $f=\frac{3 \times 10^{8}}{500 \times 10^{-9}}$

C1
$f=6(.0) \times 10^{14} \mathrm{~Hz}$

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	23

(c) vibrations are in one direction M1 perpendicular to direction of propagation / energy transfer or good sketch showing this A1

6 (a) (i) electron
(ii) any two:
can be deflected by electric and magnetic fields or negatively charged /
absorbed by few $(1-4) \mathrm{mm}$ of aluminum / 0.5 to 2 m or metres for range in air / speed up to 0.99 c / range of speeds / energies
(iii) decay occurs and cannot be affected by external / environmental factors or two stated factors such as chemical / pressure / temperature / humidity
(b) 3 and 0 for superscript numbers

B1
2 and -1 for subscript numbers B1
(c) energy $=5.7 \times 10^{3} \times 1.6 \times 10^{-19}\left(=9.12 \times 10^{-16} \mathrm{~J}\right)$
$v^{2}=\frac{2 \times 9.12 \times 10^{-16}}{9.11 \times 10^{-31}}$
$v=4.5 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
A1

