CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

Section A

1	(a) force is proportional to the product of the masses and inversely proportional to the square of the separation either point masses or separation >> size of masses	M1 A1	[2]
	(b) (i) gravitational force provides the centripetal force $mv^2/r = GMm/r^2$ and $E_K = \frac{1}{2}mv^2$ hence $E_K = GMm/2r$	B1 M1 A0	[2]
	(ii) 1. $\Delta E_{\rm K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 9.26 × 10 ⁷ J (ignore any sign in answer) (allow 1.0 × 10 ⁸ J if evidence that $E_{\rm K}$ evaluated separately for each	C1 A1	[2]
	2. $\Delta E_P = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 1.85 × 10 ⁸ J (ignore any sign in answer) (allow 1.8 or 1.9 × 10 ⁸ J)	C1 A1	[2]
	(iii) either $(7.30 \times 10^6)^{-1}$ – $(7.34 \times 10^6)^{-1}$ or $\Delta E_{\rm K}$ is positive/E _K increased speed has increased	M1 A1	[2]
2	(a) (i) sum of potential energy and kinetic energy of atoms/molecules/particl reference to random	es M1 A1	[2]
	(ii) no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules (reference to random motion here then allow back credit to (i) if M1 sco	B1 B1 B1 ored)	[3]
	(b) kinetic energy ∞ thermodynamic temperature either temperature in Celsius, not kelvin so incorrect	В1	
	or temperature in kelvin is not doubled	B1	[2]
3	(a) temperature of the spheres is the same no (net) transfer of energy between the spheres	B1 B1	[2]
	(b) (i) power = $m \times c \times \Delta \theta$ where m is mass per second $3800 = m \times 4.2 \times (42 - 18)$ $m = 38 \mathrm{g s^{-1}}$	C1 C1 A1	[3]
	(ii) some thermal energy is lost to the surroundings so rate is an overestimate	M1 A1	[2]
4	(a) straight line through origin shows acceleration proportional to displacement negative gradient shows acceleration and displacement in opposite directions	M1 A1 M1 A1	[4]

-	ı agc			Cyliabas	i apci	
			GCE AS/A LEVEL – October/November 2012	9702	41	
	(b) (i)	2.80	cm .		A1	[1]
	(ii)	grad	er gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ lient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
			22 rad s ⁻¹		C1	
		freq	uency = (22/2π =) 3.5 Hz		A1	[3]
	e.	g. <u>upp</u>	er spring may not be extended er spring may exceed limit of proportionality/elastic limit exible suggestion)		B1	[1]
5	(a) (i)		o of charge and potential (difference)/voltage o must be clear)		B1	[1]
	/:: \				D4	
	(ii)	•	acitor has equal magnitudes of (+)ve and (-)ve charge charge on capacitor is zero (so does not store charge)		B1 B1	
			e and (-)ve charges to be separated		M1	
		worl	k done to achieve this so stores energy		A1	[4]
	(b) (i)		acitance of Y and Z together is 24 μF		C1	
			t = 1/24 + 1/12 8.0 μF (<i>allow</i> 1 s.f.)		A1	[2]
	410		,			
	(ii)	som	e discussion as to why all charge of one sign on one pla $(CV =) 8.0 \times 10^{-6} \times 9.0$	te of X	B1 M1	
		= 72			A0	[2]
	(iii)		$V = (72 \times 10^{-6})/(12 \times 10^{-6})$ = 6.0 V (allow 1 s.f.) (allow 72/12)		A1	[1]
		2.	either Q = $12 \times 10^{-6} \times 3.0$ or charge is shared between	Y and Z	C1	
			charge = 36 μC		A1	[2]
			Must have correct voltage in (iii)1 if just quote of 36μ C in	n (iii) 2.		
6	(a) (i)	part	icle must be moving		M1	
	(-) ()	•	component of velocity normal to magnetic field		A1	[2]
	(ii)	F=	Bq v sin $ heta$		M1	
	, ,		and θ explained		A1	[2]
	(b) (i)	face	BCGF shaded		A1	[1]
	(ii)	betv	veen face BCGF and face ADHE		A1	[1]
			difference gives rise to an <u>electric</u> field		M1	
			= qE (no need to explain symbols) ic field gives rise to force (on an electron)		A1	[2]
	OI.	CICCIII	o hold gives rise to lorde (on all electron)		Λ1	[4]

Mark Scheme

Syllabus

Paper

Page 3

			l												
7	(a)						M1 A1	[2]							
	(b)	(i)		reduce gnetised	flux	losses/i	increase	flux	linkage	e/easily	ma	gnetised	<u>and</u>	B1	[1]
			cause						M1 A1	[2]					
		(ii)	gives iflux lin	ives rise to (changing) flux in core ux links the <u>secondary coil</u> N			B1 B1 M1 A1	[4]							
8	(a)		iscrete quantity/packet/quantum of energy of electromagnetic radiation nergy of photon = Planck constant × frequency				B1 B1	[2]							
	(b)	rate ma: ma:	threshold frequency rate of emission is proportional to intensity (1) max. kinetic energy of electron dependent on frequency max. kinetic energy independent of intensity (1) (any three, 1 each, max 3)					В3	[3]						
	(c)	$\lambda =$ ene	ergy = 4	<i>hc/λ</i> n to give .4 × 10 ⁻¹ 5 eV so r			woi to g	jive λ	eV etion of = 355 n 450 nm	ım				C1 M1 A1	[3]
		thre	eshold f)nm = 6	nction = 3 requency 5.67×10 ¹² Hz < 8.2	/ = 8.4 Hz	45×10 ¹⁴ F	Hz							C1 M1 A1	

Mark Scheme
GCE AS/A LEVEL – October/November 2012

Syllabus 9702 Paper 41

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

Section B

(a)	infir infir infir infir	nite input impedance/resistance nite (open loop) gain nite bandwidth nite slew rate	В3	[3]
(b)	(i) (ii)	graph: square wave correct cross-over points where $V_2 = V_1$ amplitude 5 V correct polarity (positive at $t = 0$) correct symbol for LED diodes connected correctly between V_{OUT} and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct)	M1 A1 A1 A1 M1 A1	[4] [3]
of o all i ima ima ima ima that	me s mag ges ges ge fo ge fo	section/slice (1) es in the same plane (1) combined to give image of section/slice of successive sections/slices combined ormed using a computer ormed is 3D image (1) be rotated/viewed from different angles (1)	B1 B1 B1 B1	[6]
	exti mul digi data any	ra bits can be added to check for errors Itiplexing possible ital circuits are more reliable/cheaper a can be encrypted for security r sensible advantages, 1 each, max. 3 1. higher frequencies can be reproduced 2. smaller changes in loudness/amplitude can be detected bit rate = 44.1 × 10 ³ × 16 = 7.06 × 10 ⁵ s ⁻¹ number = 7.06 × 10 ⁶ × 340	B3 B1 B1 C1	[3] [1] [1]
(a)	(i) (ii)	$= 2.4 \times 10^8$	B1 B1 B1	[2] [1] [2]
	(b) X-ra of coall i ima ima ima ima that (for (a))	infininfininfininfininfininfininfininf	amplitude 5 V correct polarity (positive at t = 0) (ii) correct symbol for LED diodes connected correctly between V _{OUT} and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct) X-ray images taken from different angles/X-rays directed from different angles of one section/slice (1) all images in the same plane (1) images combined to give image of section/slice images of successive sections/slices combined image formed using a computer image formed using a computer image formed is 3D image (1) (four B-marks plus any two additional marks) (a) e.g. noise can be eliminated/filtered/signal can be regenerated extra bits can be added to check for errors multiplexing possible digital circuits are more reliable/cheaper data can be encrypted for security any sensible advantages, 1 each, max. 3 (b) (i) 1. higher frequencies can be reproduced 2. smaller changes in loudness/amplitude can be detected (ii) bit rate = 44.1 × 10 ³ × 16 = 7.06 × 10 ⁵ s ⁻¹ number = 7.06 × 10 ⁶ × 340 = 2.4 × 10 ⁸ (a) (i) signal in one wire (pair) is picked up by a neighbouring wire (pair) (iii) outer of coaxial cable is earthed	infinite input impedance / resistance infinite (open loop) gain infinite bandwidth infinite slew rate 1 each, max. 3 B3 (b) (i) graph: square wave correct cross-over points where V2 = V1 A1 amplitude 5V A1 amplitude 5V A1 amplitude 5V A1 (ii) correct symbol for LED diodes connected correctly between Vout and earth correct polarity (positive at t = 0) A1 (ii) correct symbol for LED diodes connected correctly between Vout and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct) X-ray images taken from different angles / X-rays directed from different angles of one section / slice (1) all images in the same plane (1) images combined to give image of sections / slices combined (1) images formed using a computer B1 image formed using a computer B1 image formed is 3D image (1) (four B-marks plus any two additional marks) B2 (a) e.g. noise can be eliminated / filtered / signal can be regenerated extra bits can be added to check for errors multiplexing possible digital circuits are more reliable / cheaper data can be nercyted for security any sensible advantages, 1 each, max. 3 B3 (b) (i) 1. higher frequencies can be reproduced B1 (ii) bit rate = 44.1 × 10² × 16

	GCE AS/A LEVEL – October/November 2012	9702	41	
(b)	attenuation per unit length = $1/L \times 10 \lg(P_2/P_1)$ signal power at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$		C1	
	$= 1.2 \times 10^{-5} \text{W}$		C1	
	attenuation in wire pair = $10 \log((3.0 \times 10^{-3})/(1.2 \times 10^{-5}))$		•	
	= 24 dB attenuation per unit length = 24 / 1.4		C1	
	$= 17 \text{ dB km}^{-1}$		A1	[4]

Syllabus

Paper

Mark Scheme

Page 6