MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	43

Section A

1 (a) (i) number of molecules
B1 [1]
(ii) mean square speed

B1
(b) (i)

$$
\text { 1. } \begin{aligned}
& p V=n R T \\
& n=\left(6.1 \times 10^{5} \times 2.1 \times 10^{4} \times 10^{-6}\right) /(8.31 \times 285) \\
& n=5.4 \mathrm{~mol}
\end{aligned}
$$

C1
C1
A1
2. either $N=n N_{\mathrm{A}}$
$=5.4 \times 6.02 \times 10^{23}$
C1
$=3.26 \times 10^{24}$ A1
or
$p V=N k T$
$N=\left(6.1 \times 10^{5} \times 2.1 \times 10^{4} \times 10^{-6}\right) /\left(1.38 \times 10^{-23} \times 285\right)$
$N=3.26 \times 10^{24}$
(ii) either $6.1 \times 10^{5} \times 2.1 \times 10^{-2}=\frac{1}{3} \times 3.25 \times 10^{24} \times 4 \times 1.66 \times 10^{-27} \times\left\langle c^{2}\right\rangle$
$\left\langle c^{2}\right\rangle=1.78 \times 10^{6}$
C1
$C_{\text {RMS }}=1.33 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ A1
or
$1 / 2 \times 4 \times 1.66 \times 10^{-27} \times\left\langle c^{2}\right\rangle=\frac{3}{2} \times 1.38 \times 10^{-23} \times 285$
$\left\langle c^{2}\right\rangle=1.78 \times 10^{6}$
$C_{\text {RMS }}=1.33 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$

2 (a) (i) 1. $0.1 \mathrm{~s}, 0.3 \mathrm{~s}, 0.5 \mathrm{~s}$, etc (any two) A1
2. either $0,0.4 \mathrm{~s}, 0.8 \mathrm{~s}, 1.2 \mathrm{~s}$
or
$0.2 \mathrm{~s}, 0.6 \mathrm{~s}, 1.0 \mathrm{~s}$ (any two)
A1
(ii) $\begin{array}{ll}\text { period }=0.4 \mathrm{~s} & \mathrm{C} 1\end{array}$
frequency $=(1 / 0.4=) 2.5 \mathrm{~Hz}$ A1
(iii) phase difference $=90^{\circ}$ or $1 / 2 \pi \mathrm{rad}$ B1
(b) frequency $=2.4-2.5 \mathrm{~Hz}$
(c) e.g. attach sheet of card to trolley
increases damping / frictional force
e.g. reduce oscillator amplitude
reduces power/energy input to system

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	43

3 (a) (i) (tangent to line gives) direction of force on a (small test) mass
$\begin{array}{lr}\text { (ii) (tangent to line gives) direction of force on a (small test) charge } & \text { M1 } \\ \text { charge is positive } & \text { A1 }\end{array}$
(b) similarity:
e.g. radial fields
lines normal to surface
greater separation of lines with increased distance from sphere
field strength $\propto 1$ / (distance to centre of sphere) ${ }^{2}$
(allow any sensible answer)
difference:
e.g. gravitational force (always) towards sphere B1
electric force direction depends on sign of charge on sphere / towards or away from sphereB1
e.g. gravitational field/force is attractive (B1)
electric field/force is attractive or repulsive
(allow any sensible comparison)
(c) gravitational force $=1.67 \times 10^{-27} \times 9.81$

$$
=1.6 \times 10^{-26} \mathrm{~N}
$$

A1
electric force $=1.6 \times 10^{-19} \times 270 /\left(1.8 \times 10^{-2}\right) \quad$ C1
$=2.4 \times 10^{-15} \mathrm{~N}$
A1
electric force very much greater than gravitational force

4 (a) force on proton is normal to velocity and field M1
provides centripetal force (for circular motion) A1
(b) magnetic force $=B q v \quad$ B1
centripetal force $=m r \omega^{2}$ or $m v^{2} / r \quad$ B1
$v=r \omega \quad \mathrm{~B} 1$
$B q v=B q r \omega=m r \omega^{2}$
$\omega=B q / m$
A1
$\begin{array}{lr}\text { (a) either } \phi=B A \sin \theta & \text { M1 } \\ \text { where } A \text { is the area (through which flux passes) } \\ \theta \text { is the angle between } B \text { and (plane of) } A & \text { A1 } \\ \text { or } \\ \phi=B A & \text { (M1) } \\ \text { where } A \text { is area normal to } B & \text { (A1) }\end{array}$
(b) graph: V_{H} constant and non zero between the poles and zero outside

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	43

$\begin{array}{llr}\text { (c) } & \text { (i) } & \text { (induced) e.m.f. proportional to } \\ & \text { rate of change of (magnetic) flux (linkage) } & \text { M1 } \\ & \text { A1 }\end{array}$
(ii) $\begin{array}{ll}\text { short pulse on entering and on leaving region between poles } \\ \text { pulses approximately the same shape but opposite polarities } & \text { M1 } \\ \text { e.m.f. zero between poles and outside } & \text { A1 }\end{array}$ A1

6 (a) (i) connection to 'top' of resistor labelled as positive
(ii) diode B and diode D
(b) (i) $V_{P}=4.0 \mathrm{~V}$

C1
mean power $=V_{\mathrm{P}}^{2} / 2 R$
C1
$=4^{2} /(2 \times 2700)$
$=2.96 \times 10^{-3} \mathrm{~W}$
(ii) capacitor, correct symbol, connected in parallel with R

B1
(c) graph: half-wave rectification M1 same period and same peak value A1

7 (a) wavelength associated with a particle M1 that is moving A1
(b) (i) kinetic energy $=1.6 \times 10^{-19} \times 4700$ C1
either energy $=p^{2} / 2 m$ or $E_{K}=1 / 2 m v^{2}$ and $p=m v$
C1
$p=\sqrt{ }\left(7.52 \times 10^{-16} \times 2 \times 9.1 \times 10^{-31}\right)$ C1
$=3.7 \times 10^{-23} \mathrm{~N} \mathrm{~s}$

$$
\begin{aligned}
\lambda & =h / p \\
& =\left(6.63 \times 10^{-34}\right) /\left(3.7 \times 10^{-23}\right)
\end{aligned}
$$

C1

$$
=1.8 \times 10^{-11} \mathrm{~m}
$$

A1
(ii) wavelength is about separation of atoms $\quad \mathrm{B} 1$ can be used in (electron) diffraction

8 (a) (i) $x=2$
A1
(ii) either beta particle or electron
(b) (i) mass of separate nucleons $=\{(92 \times 1.007)+(143 \times 1.009)\} u$

$$
=236.931 \mathrm{u}
$$

binding energy $=236.931 u-235.123 u$

$$
=1.808 \mathrm{u}
$$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9702	43

(b) e.g. shorter aerial required
longer transmission range / lower transmitter power / less attenuation allows more than one station in a region less distortion (allow any three sensible suggestions, 1 mark each) B3

12 (a) (i) e.g. linking a (land) telephone to the (local) exchange
(ii) e.g. connecting an aerial to a television B1
(iii) e.g. linking a ground station to a satellite B1
(b) (i) attenuation $=10 \lg \left(P_{2} / P_{1}\right)$

C1
total attenuation $=2.1 \times 40(=84 \mathrm{~dB})$ C1
$84=10 \lg \left(\left\{450 \times 10^{-3}\right\} / P\right)$ $P=1.8 \times 10^{-9} \mathrm{~W}$ A1
(answer $1.1 \times 10^{8} \mathrm{~W}$ scores 1 mark only)
(ii) maximum attenuation $=10 \lg \left(\left\{450 \times 10^{-3}\right\} /\left\{7.2 \times 10^{-11}\right\}\right)$

$$
=98 \mathrm{~dB}
$$

maximum length $=98 / 2.1$

$$
=47 \mathrm{~km}
$$

