MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2013	9702	21	
1	amp	in / K bere / amp / A w mole / mol and candela / Cd]		B1 B1	[2]
		rgy OR work = force × distance [allow any energy express s: kg m s ⁻² × m OR kg (m s ⁻¹) ² for $\frac{1}{2} mv^2$ or mc^2 (ignore any numerical factor)	ssion]	C1 M1	
		$= \text{kg m}^2 \text{ s}^{-2}$		A0	[2]
	(ii) unit: C: I = kg	s: <i>ρ</i> : kg m ^{−3} g: m s ^{−2} A: m ² l ₀ : m kg m ² s ^{−2} / kg ² m ^{−6} m ² s ^{−4} m ² m ³ [any subject] g ^{−1} m s ² (allow m s ² / kg)		C1 C1 A1	[3]
2		4 (allow $t = 0.2 \times 2$) $10^8 \times 0.8 \times 10^{-6}$ OR $3 \times 10^8 \times 0.4 \times 10^{-6}$ m hence distance from source to reflector = 120 m		C1 C1 C1 A1	[4]
		f sound 300 cf speed of light 3×10^8 OR time = 240 OR time = 120 ower by factor of 10^6 OR time for one division 0.8 / 4	/ 300 (= 0.4)	C1	
		OR time for one division 0.4 / 2 se setting 0.2 s cm ⁻¹ [unit required]		C1 A1	[3]
3		force \times distance <u>moved</u> / displacement in the direction of n a force moves in the direction of the force work is done		B1	[1]
	(b) kinetic e	nergy = $\frac{1}{2} mv^2$ = $\frac{1}{2} 0.4 (2.5)^2 = 1.25 / 1.3 J$		C1 A1	[2]
		a under graph is work done / work done = $\frac{1}{2}Fx$ 1.25 = (14 x) / 2 0.18 (0.179) m [allow x = 0.19 m using kinetic energ	y = 1.3 J]	C1 C1 A1	[3]
	(ii) sma	both curve from $v = 2.5$ at $x = 0$ to $v = 0$ at Q ve with increasing gradient	. –	M1 A1	[2]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2013	9702	21	
4	(a) torque of a couple = <u>one</u> of the forces / a force × distance multiplied by the <u>perpendicular distance between the forc</u>				M1 A1	[2]	
	(b)	(i)		ht at P (vertically) down nal reaction OR contact force at (point of contact	with the pin)	B1 P	
		(vertically) up		B1	[2]		
	((ii)	torqu	ue = 35 × 0.25 (or 25) × 2 = 18 (17.5) N m		C1 A1	[2]
	(i	iii)		wo 35N forces are equal and opposite and the weight act / reaction force are equal and opposite	and the upwar	d / B1	[1]
	(i	iv)	not i	n equilibrium as the (resultant) torque is not zero		B1	[1]
5	(a)	(i)		lacement is the distance the rope / particles are (above equilibrium / mean / rest / undisturbed position (not 'dista		om B1	[1]
	((ii)	1.	amplitude (= 80 / 4) = 20 mm		B1	[1]
				$v = f\lambda \text{ or } v = \lambda / T$ f = 1 / T = 1 / 0.2 (5 Hz) $v = 5 \times 1.5 = 7.5 \text{ m s}^{-1}$		C1 C1 A1	[3]
		•		f rope shown at equilibrium position velength, shape, peaks / wave moved $1\!$		B1 B1	[2]
	(c)	(i)		ressive as energy OR peaks OR troughs is/are t bagated (by the waves)	ransferred/mov	ed B1	[1]
	((ii)		sverse as particles/rope movement is perpendicular to bagation of the energy/wave velocity	direction of trav	vel B1	[1]
6		•		ork (done) / charge OR energy transferred from (electric narge	al to other forn	ns) B1	[1]
	(b)	(i)		hol / Α 18 × 10 ⁻⁹ (18 × 10 ⁻⁹ × 75) / 2.5 × 10 ⁻⁶ = 0.54 Ω		C1 C1 A1	[3]
	((ii)		IR 38 + (2 × 0.54) 240 / 39.08 = 6.1 (6.14) A		C1 C1 A1	[3]

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2013	9702	21	
	=	$I^{2}R$ or $P = VI$ and $V = IR$ or $P = V^{2}/R$ and $V = IR$ (6.14) ² × 2 × 0.54 41 (40.7) W		C1 C1 A1	[3]
	(c) area of wire is less (1/5) hence resistance greater (×5) OR R is \propto 1/A therefore R is greater				
		p.d. across wires greater so power loss in cables increases		A1	[2]
7		direction of the fields is the same OR fields are uniform 0 stric field strength OR $E = V / d$ with symbols explained	OR constant	B1	[1]
	• • •	uce p.d. across <u>plates</u> ease separation <u>of plates</u>		B1 B1	[2]
		pposite charge to β (as deflection in opposite direction) as a range of velocities OR energies (as different	deflections) and	B1	
	α al	I have same velocity OR energy (as constant deflection) re more massive (as deflection is less for greater field str	,	B1 B1	[3]
	(b) $W = 234$ and $X = 90$ Y = 4 and $Z = 2$				[2]
	(c) A = 32 a	and $B = 16$ and $C = 0$ and $D = -1$		B1	[1]