MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9702	43

Section A

1 (a) force proportional to product of the two masses and inversely proportional to the square of their separation
either reference to point masses or separation >> 'size' of masses
(b) gravitational force provides the centripetal force

B1
$G M m / R^{2}=m R \omega^{2}$
M1
where m is the mass of the planet A1
$G M=R^{3} \omega^{2}$
A0
(c) $\omega=2 \pi / T$

C1
either $M_{\text {star }} / M_{\text {Sun }}=\left(R_{\text {star }} / R_{\text {Sun }}\right)^{3} \times\left(T_{\text {Sun }} / T_{\text {star }}\right)^{2}$
$M_{\text {star }}=4^{3} \times(1 / 2)^{2} \times 2.0 \times 10^{30}$
C1

$$
\begin{equation*}
=3.2 \times 10^{31} \mathrm{~kg} \tag{A1}
\end{equation*}
$$

or $\quad M_{\text {star }}=(2 \pi)^{2} R_{\text {star }}{ }^{3} / G T^{2}$

$$
\begin{align*}
& =\left\{(2 \pi)^{2} \times\left(6.0 \times 10^{11}\right)^{3}\right\} /\left\{6.67 \times 10^{-11} \times(2 \times 365 \times 24 \times 3600)^{2}\right\} \tag{C1}\\
& =3.2 \times 10^{31} \mathrm{~kg} \tag{C1}
\end{align*}
$$

2 (a) (i) sum of kinetic and potential energies of the molecules $\begin{array}{ll}\text { reference to random distribution }\end{array} \quad$ M1
(ii) for ideal gas, no intermolecular forces M1 so no potential energy (only kinetic)
(b) (i) $\begin{aligned} \text { either change in kinetic energy } & =3 / 2 \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} \times 180 \\ & =2240 \mathrm{~J}\end{aligned}$

$$
\begin{equation*}
=2240 \mathrm{~J} \tag{A1}
\end{equation*}
$$

$$
\text { or } \quad \begin{align*}
& R=k N_{\mathrm{A}} \\
& \text { energy }=3 / 2 \times 1.0 \times 8.31 \times 180 \tag{C1}\\
&=2240 \mathrm{~J} \tag{A1}
\end{align*}
$$

$\begin{array}{ll}\text { (ii) increase in internal energy }=\text { heat supplied }+ \text { work done on system } & \text { B1 } \\ 2240=\text { energy supplied }-1500 & \text { C1 }\end{array}$ energy supplied $=3740 \mathrm{~J}$ A1

3 (a) work done bringing unit positive charge \quad M1 from infinity (to the point)
(b) (i) either both potentials are positive/same sign
so same sign
or gradients are positive \& negative (so fields in opposite directions) (M1)
(ii) the individual potentials are summed
(iii) allow value of x between 10 nm and 13 nm
(iv) $V=0.43 \mathrm{~V}$ (allow $0.42 \mathrm{~V} \rightarrow 0.44 \mathrm{~V}$) M1
energy $=2 \times 1.6 \times 10^{-19} \times 0.43$
A1
$=1.4 \times 10^{-19} \mathrm{~J}$ A1

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9702	43

4 (a) e.g. store energy (do not allow 'store charge')
in smoothing circuits
blocking d.c.
in oscillators
any sensible suggestions, one each, max. 2
(b) (i) potential across each capacitor is the same and $Q=C V$
(ii) total charge $Q=Q_{1}+Q_{2}+Q_{3}$
$C V=C_{1} V+C_{2} V+C_{3} V$
(allow $Q=C V$ here or in (i))
so $C=C_{1}+C_{2}+C_{3}$
A0
(c) (i)

(ii)

5 (a) (i) region (of space)
either where a moving charge (may) experience a force
or around a magnet where another magnet experiences a force
B1
(ii) $(\Phi=) B A \sin \theta$

A1
(b) (i) plane of frame is always parallel to B_{V} / f flux linkage always zero
(ii) $\Delta \Phi=1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$

$$
=8.9 \times 10^{-6} \mathrm{~Wb}
$$

(c) (i) (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)
(allow rate of cutting of flux)
(ii) e.m.f. $=\left(8.9 \times 10^{-6}\right) / 0.30$

$$
\begin{equation*}
=3.0 \times 10^{-5} \mathrm{~V} \tag{A1}
\end{equation*}
$$

(iii) This question part was removed from the assessment. All candidates were awarded 1 mark.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9702	43

6 (a) either constant speed parallel to plate or accelerated motion/force normal to plate/in direction field B1 so not circular AO
(b) (i) direction of force due to magnetic field opposite to that due to electric field B1
(ii) force due to magnetic field $=$ force due to electric field
A1
magnetic field into plane of page

$$
B q v=q E
$$

$$
B=E / v
$$

$=\left(2.8 \times 10^{4}\right) /\left(4.7 \times 10^{5}\right)$ $=6.0 \times 10^{-2} \mathrm{~T}$
(c) (i) no change/not deviated B1
(ii) deviated upwards B1
(iii) no change/not deviated

7 (a) (i) minimum photon energy
minimum energy to remove an electron (from the surface)
B1
(ii) either maximum KE is photon energy - work function energy
or max KE when electron ejected from the surface
B1
energies lower than max because energy required to bring electron to the surface

B1
(b) (i) threshold frequency $=1.0 \times 10^{15} \mathrm{~Hz}$ (allow $\pm 0.05 \times 10^{15}$)

C1
work function energy $=h f_{0}$
C1

$$
\begin{align*}
& =6.63 \times 10^{-34} \times 1.0 \times 10^{15} \\
& =6.63 \times 10^{-19} \mathrm{~J} \tag{A1}
\end{align*}
$$

(allow alternative approaches based on use of co-ordinates of points on the line)
(ii) sketch: straight line with same gradient displaced to right

(iii) intensity determines number of photons arriving per unit time

 intensity determines number of electrons per unit time (not energy)8 (a) probability of decay (of a nucleus)/fraction of number of nuclei in sample that decay
(allow $\lambda=(d N / d t) / N$ with symbols explained $-(M 1),(A 1)$)
(b) (i) number $=\left(1.2 \times 6.02 \times 10^{23}\right) / 235$

$$
=3.1 \times 10^{21}
$$

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9702	43

(ii) $N=N_{0} \mathrm{e}^{-\lambda t}$
negligible activity from the krypton B1
for barium, $N=\left(3.1 \times 10^{21}\right) \exp \left(-6.4 \times 10^{-4} \times 3600\right)$ $=3.1 \times 10^{20}$

C1
activity $=\lambda N$
$=6.4 \times 10^{-4} \times 3.1 \times 10^{20} \quad \mathrm{C} 1$
$=2.0 \times 10^{17} \mathrm{~Bq} \quad \mathrm{~A} 1$

Section B

9 (a) e.g. zero output impedance/resistance
infinite input impedance/resistance
infinite (open loop) gain
infinite bandwidth
infinite slew rate
(1 each, max. 3)
B3
(b) (i) gain $=1+(10.8 / 1.2)$

C1

$$
=10
$$

A1
$\begin{array}{ll}\text { (ii) graph: straight line from }(0,0) \text { towards } V_{\text {IN }}=1.0 \mathrm{~V}, V_{\text {OUT }}=10 \mathrm{~V} & \text { B1 } \\ \text { horizontal line at } V_{\text {OUT }}=9.0 \mathrm{~V} \text { to } V_{\text {IN }}=2.0 \mathrm{~V} & \text { B1 } \\ \left.\text { correct }+9.0 \mathrm{~V} \rightarrow-9.0 \mathrm{~V} \text { (and correct shape to } V_{\text {IN }}=0\right) & \text { B1 }\end{array}$

10 (a) nuclei spin/precess
spin/precess about direction of magnetic field B1
either frequency of precession depends on magnetic field strength
or large field means frequency in radio frequency range
(b) non-uniform field means frequency of precession different in different regions of subject
enables location of precessing nuclei to be determined
enables thickness of slice to be varied/location of slice to be changed

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9702	43

(ii) output of ADC is number of digits all at one time B1
parallel-to-serial sends digits one after another B1B1 [1]B1 [1]

12 (a) e.g. no/little ionospheric reflection
large information carrying capacity
(any two sensible suggestions, 1 each)B2
$\begin{array}{lc}\text { (b) prevents (very) low power signal received at satellite } & \text { M1 } \\ \text { being swamped by high-power transmitted signal }\end{array}$
(c) attenuation $/ \mathrm{dB}=10 \lg \left(P_{2} / P_{1}\right)$

C1
$185=10 \lg \left(\left\{3.1 \times 10^{3}\right\} / P\right) \quad$ C1 $P=9.8 \times 10^{-16} \mathrm{~W}$ A1

