CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	21

1 (a) temperature current B1 (allow amount of substance and luminous intensity)
(b) base units of force constant: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}^{-1}$ or $\mathrm{kg} \mathrm{s}^{-2}$ B1
base units of time and mass: s and kg C1
base units of $C: \mathrm{s}\left(\mathrm{kg} \mathrm{s}^{-2} / \mathrm{kg}\right)^{1 / 2}$ cancelling to show no units

2 (a) pressure = force / area (normal to the force) [clear ratio essential]
(b) (i) $P=m g / A=(5.09 \times 9.81) / A$ C1

$$
\begin{equation*}
A=\left(\pi d^{2} / 4\right)=\pi \times\left(9.4 \times 10^{-2}\right)^{2} / 4\left(=0.00694 \mathrm{~m}^{2}\right) \tag{C1}
\end{equation*}
$$

$P=49.93 / 0.00694$
$=7200(7195) \mathrm{Pa}$ (minimum of 2 s.f. required)
A1
(ii) $\Delta P / P=\Delta m / m+2 \Delta d / d$

C1

$$
\begin{equation*}
=0.01 / 5.09+(2 \times 0.1) / 9.4(=0.0020+0.021 \text { or } 2.3 \%) \tag{C1}
\end{equation*}
$$

$\Delta P=170(165$ to 167$) \mathrm{Pa}$
A1
(iii) $P=7200 \pm 200 \mathrm{~Pa}$

3 (a) random error (in the measurements) of the length OR resistance
(b) gradient $=(3.6-1.9) /(0.8-0.4)$

$$
=4.25
$$

(c) $R=\rho l / A$

$$
\begin{align*}
\rho & =\text { gradient } \times \text { area }=4.25 \times 0.12 \times 10^{-6} \\
& =5.1(0) \times 10^{-7} \Omega \mathrm{~m} \tag{3}
\end{align*}
$$

(d) resistance decreasing with increasing area $\quad \mathrm{B} 1$ correct shape with curve being asymptote to both axes B1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	21

4

| (a) (i) acceleration | $=(v-u) / t$ or $(12-0.5) / 4$ | C 1 |
| ---: | :--- | ---: | :--- |
| | $=(12-0.5) / 4=2.9(2.875)\left(=\right.$ approximately $\left.3 \mathrm{~ms}^{-2}\right)$ | M1 |

(ii) $x=(u+v) t / 2$

$$
\begin{align*}
& =[(12+0.5) \times 4] / 2 \tag{C1}\\
& =25 \mathrm{~m}
\end{align*}
$$

(iii) line with increasing gradient M1 non-zero gradient at origin A1
(b) (i) weight down slope $=2 \times 9.81 \times \sin 25^{\circ}=8.29 / 8.3$ M1
(ii) $\quad(F=m a) \quad 8.3-F_{\mathrm{R}}=2 \times 2.9$
$F_{R}=2.5(2.3$ if 3 used for $a) \mathrm{N}$
C1
(a) (i) change in kinetic energy $=1 / 2 m v^{2}$

C1

$$
=0.5 \times 25 \times(0.64)^{2}=5.1(2) \mathrm{J}
$$

A1
(ii) zero
(iii) $(-) 5.1(2) \mathrm{J}$

A1
A1
[2]

5
(b) (i) $\mathrm{PE}=m g h$ C1
$=350 \times 0.64 \times 25 \quad \mathrm{C} 1$
$=5600 \mathrm{~J}$
(If full length used allow 1/3)
(ii) $P=F v$ or gain in $P E / t, E_{P} / t$ or work done $/ t, \mathrm{~W} / t$

C1

$$
\begin{aligned}
& =350 \times 0.64 \text { or } 5600 / 25 \\
& =220(224) \mathrm{W}
\end{aligned}
$$

6 melting: solid to liquid
at a specific/one temperature/at the melting point
evaporation: liquid to vapour/gas OR molecules escape from surface of liquid
at all temperatures

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	21

7 (a) due to the lost volts in internal resistance/cell or energy losses in the internal resistance/cell
(b) (i) $V=I R$

C1

$$
=1.2 \times 6=7.2 \mathrm{~V}
$$

(ii) p.d. across Y and internal resistance $r=4.8(\mathrm{~V})[12-7.2]$
resistance of $\mathrm{Y}+r=4.8 / 1.2=4(\Omega)$ C1
resistance of $Y=4-0.5=3.5 \Omega$ A1
or
$R_{\text {total }}=12 / 1.2=10(\Omega)$
$X+r=6.5(\Omega)$
resistance of $Y=3.5 \Omega$
(iii) $P=I^{2} r$

$$
=(1.2)^{2} \times 0.5=0.72 \mathrm{~W}
$$

(c) terminal p.d. increases as R is increased current decreases so there are less lost volts

8 (a) two waves (of the same kind) travelling in opposite directions overlap B1 waves have same frequency/wavelength and speed

B1
(b) (i) $T=0.8(\mathrm{~ms})$

C1
$f=1 /\left(0.8 \times 10^{-3}\right)=1250(\mathrm{~Hz})$
A1
(ii) microphone is moved from plate to loudspeaker or vice versa
wavelength is the twice the distance between adjacent maxima or minima (seen on c.r.o.)
(iii) $v=f \lambda$

$$
\begin{aligned}
& =1250 \times 0.26 \\
& =330(325) \mathrm{m} \mathrm{~s}^{-1}
\end{aligned}
$$

