CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	22

1 (a) stress $=$ Young modulus \times strain

$$
\begin{array}{ll}
=1.8 \times 10^{11} \times 8.2 \times 10^{-4} \text { or } 1.476 \times 10^{8} & \mathrm{C} 1 \\
=0.15(0.148) \mathrm{GPa} & \mathrm{~A} 1
\end{array}
$$

(b) (i) wavelength $=3 \times 10^{8} / 12 \times 10^{12}$

$$
\begin{equation*}
=25 \mu \mathrm{~m} \tag{A1}
\end{equation*}
$$

(ii) infra-red/IR
(c) (i) arrow drawn up to the left of 7.5 N force approximately 5° to 40° to west of north
(ii) 1. correct vector triangle or working to show magnitude of resultant force $=6.6 \mathrm{~N}$ allow 6.5 to 6.7 N if scale diagram M1
2. magnitude of acceleration $=6.6 / 0.75$
[scale diagram: (6.5 to 6.7) / 0.75]

$$
=8.8 \mathrm{~m} \mathrm{~s}^{-2} \text { [scale diagram: } 8.7-8.9 \mathrm{~m} \mathrm{~s}^{-2} \text {] }
$$

(iii) 19° [use of scale diagram allow 17° to 21° (a diagram must be seen)]
(a) (i) straight line from $t=0.60 \mathrm{~s}$ to $t=1.2 \mathrm{~s}$ and $\left|V_{\mathrm{v}}\right|=5.9$ at $t=1.2 \mathrm{~s}$ A1
(ii) $s=0+1 / 2 \times 9.81 \times(0.6)^{2}$ or area of graph $=(5.9 \times 0.6) / 2$ C1

$$
=1.8(1.77) \mathrm{m} \quad=1.8(1.77) \mathrm{m}
$$(a) (i) straight line from $t=0.60 \mathrm{~s}$ to $t=1.2 \mathrm{~s}$ and $\left|V_{\mathrm{v}}\right|=5.9$ at $t=1.2 \mathrm{~s}$or area of graph $=(5.9 \times 0.6) / 2$C1A1

(iii) $V_{\mathrm{h}}=V \cos 60^{\circ}$ and $V_{\mathrm{v}}=V \sin 60^{\circ}$ or $V_{\mathrm{h}}=5.9 / \tan 60^{\circ}$ or $V_{\mathrm{h}}=5.9 \tan 30^{\circ}$ C1

$$
V_{\mathrm{h}}=3.4 \mathrm{~m} \mathrm{~s}^{-1}
$$A1(iv) horizontal line at 3.4 from $t=0$ to $t=1.2 \mathrm{~s}$ [to half a small square]B1

(b) (i) $\mathrm{KE}=1 / 2 m v^{2}$ C1
$=1 / 2 \times 0.65 \times(6.81)^{2} \quad$ [allow if valid method to find v] C1

$$
=15(15.1) \mathrm{J}
$$ A1

(ii) $\mathrm{PE}=0.65 \times 9.81 \times 1.77$ C1

$$
=11(11.3) \mathrm{J}
$$[2]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	22

3 (a) electric field strength is force per unit positive charge
(b) mass $=$ volume \times density (any subject, allow usual symbols or defined symbols)

$$
=4 / 3 \times \pi \times\left(1.2 \times 10^{-6}\right)^{3} \times 930\left(=6.73 \times 10^{-15}\right)
$$

weight $=4 / 3 \times \pi \times\left(1.2 \times 10^{-6}\right)^{3} \times 930 \times 9.81=6.6 \times 10^{-14} \mathrm{~N}$C1
(c) (i) $\begin{aligned} E & =1.9 \times 10^{3} / 14 \times 10^{-3} \\ & =1.4(1.36) \times 10^{5} \mathrm{Vm}^{-1}\end{aligned}$ C1
(ii) $F=Q E$

$$
\begin{align*}
Q & =6.6 \times 10^{-14} / 1.36 \times 10^{5} \tag{C1}\\
& =4.9(4.86) \times 10^{-19} \mathrm{C} \text { [allow } 4.7 \times 10^{-19} \mathrm{C} \text { if } 1.4 \times 10^{5} \text { used] }
\end{align*}
$$

(iii) electric force increases/is greater (than weight)
charge (on S) is negative to give resultant/net/sum/total force up
(on) is egaike giseresutan/netsum/totaloup

4 (a) (i) solid: (molecules) vibrate
no translational motion/fixed position, liquid: translational motion
(ii) gas: molecules have random (and translational) motion
(b) (i) ductile: straight line through origin then curving towards x-axis
(ii) brittle: straight line through origin with no or negligible curved region
(c) similarity: obey Hooke's law / $F \propto x$ or have elastic regions
difference: brittle no or (very) little plastic region ductile has (large(r)) plastic region

5 (a) (i) in series $2 X$ or in parallel $X / 2$
other relationship given and $4 \times$ greater in series (than in parallel)
(ii) due to the internal resistance
total resistance for series circuit is not four times greater than resistance for parallel circuit
(iii) 1. $E=I_{1}(2 X+r)$ or $12=1.2(2 X+r)$
2. $E=I_{2}(X / 2+r)$ or $12=3.0(X / 2+r)$
(iv) $2 X+r=10$ and $X / 2+r=4$
$X=4.0 \Omega$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	22

(b) $\begin{aligned} P & =I^{2} R \text { or } V^{2} / R \text { or } V I \\ \text { ratio } & =\left[(1.2)^{2} \times 4\right] /\left[(1.5)^{2} \times 4\right] \\ & =0.64\end{aligned}$

$$
=0.64
$$

(c) the resistance (of a lamp) changes with V or I
V or I is greater in parallel circuit or circuit 2 or V or I is less in series circuit or circuit 1

6 (a) difference: vibration/oscillation (of particles)/displacement of particles is parallel to energy transfer/wavefronts in longitudinal and perpendicular for transverse or
transverse can be polarised, longitudinal cannot be polarised
similarity: both transfer/propagate energy
B1
(b) (i) waves from slits are coherent/constant phase relationship
waves overlap (at screen) with a phase difference or have a path difference maxima where phase difference is integer $\times 360^{\circ}$ (or $\times 2 \pi \mathrm{rad}$)
or path difference is integer $\times \lambda$
or equivalent explanation of minima e.g. $(n+1 / 2) \times 360^{\circ}$
max. 2
(ii) maxima spacing $=\lambda D / \mathrm{a}$

$$
\begin{aligned}
& =\left(6.3 \times 10^{-7} \times 2.5\right) / 0.35 \times 10^{-3} \\
& =4.5 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

(c) (ultra-violet has) shorter wavelength, hence smaller separation/distance

7 (a) (i) A: 206, nucleon(s) or neutron(s) and proton(s) \}
B: 82, proton(s) \} all correct
(ii) kinetic/ $E_{K} / K E$

B1
(b) energy $=5.3 \times 1.6 \times 10^{-13}(\mathrm{~J})\left[=8.48 \times 10^{-3}(\mathrm{~J})\right]$
power $=\left(7.1 \times 10^{18} \times 5.3 \times 1.6 \times 10^{-13}\right) /(3600 \times 24)$

$$
=70(69.7) \mathrm{W}
$$

