CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	43

1 (a) (i) either $\omega=2 \pi / T$ or $\omega=2 \pi f$ and $f=1 / T$ C1
$\omega=2 \pi / 0.30$
$=20.9 \mathrm{rad} \mathrm{s}^{-1}$ (accept 2 s.f.)
(ii) $\begin{aligned} \text { kinetic energy }=1 / 2 m \omega^{2} x_{0}^{2} \text { or } v=\omega x_{0} \text { and } 1 / 2 m v^{2} \quad \text { C1 }\end{aligned}$

$$
=1 / 2 \times 0.130 \times 20.9^{2} \times\left(1.5 \times 10^{-2}\right)^{2}=6.4 \times 10^{-3} \mathrm{~J}
$$

A1
(b) (i) as magnet moves, flux is cut by cup/aluminium giving rise to induced e.m.f.
(in cup)
induced e.m.f. gives rise to currents and heating of the cup
B1
thermal energy derived from oscillations of magnet so amplitude decreases B1
or
induced e.m.f. gives rise to currents which generate a magnetic field
the magnetic field opposes the motion of the magnet so amplitude decreases
(ii) either use of $1 / 2 m \omega^{2} x_{0}{ }^{2}$ and $x_{0}=0.75 \mathrm{~cm}$ or x_{0} is halved so $1 / 4$ energy
to give new energy $=1.6 \mathrm{~mJ}$
either loss in energy $=6.4-1.6$ or loss $=3 / 4 \times 6.4$ giving loss $=4.8 \mathrm{~mJ}$
(c) $q=m c \Delta \theta$
$4.8 \times 10^{-3}=6.2 \times 10^{-3} \times 910 \times \Delta \theta$
C1
$\Delta \theta=8.5 \times 10^{-4} \mathrm{~K}$
A1

2 (a) smooth curve with decreasing gradient, not starting at $x=0$ A1
end of line not at $g=0$ or horizontal
(b) straight line with positive gradient M1
line starts at origin A1
$\begin{array}{lr}\text { (c) sinusoidal shape } & \text { B1 } \\ \text { only positive values and peak/trough height constant } & \mathrm{B1}\end{array}$
4 'loops'

3 (a) initially, $p V / T=\left(2.40 \times 10^{5} \times 5.00 \times 10^{-4}\right) / 288=0.417 \quad$ M1
finally, $p V / T=\left(2.40 \times 10^{5} \times 14.5 \times 10^{-4}\right) / 835=0.417$ M1 ideal gas because $p V / T$ is constant A1
(allow 2 marks for two determinations of V / T and then 1 mark for V / T and p constant, so ideal)

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	43

(b) (i) work done $=p \Delta V$

$$
\begin{array}{lr}
=2.40 \times 10^{5} \times(14.5-5.00) \times 10^{-4} & \text { C1 } \\
=228 \mathrm{~J}(\text { ignore sign, not } 2 \text { s.f. }) & \text { A1 } \\
=569-228 & \\
=341 \mathrm{~J} & \text { M1 }
\end{array}
$$

(ii) $\Delta U=q+w=569-228$
increase

4 (a) acceleration/force proportional to displacement (from a fixed point) either acceleration and displacement in opposite directions or acceleration always directed towards a fixed point
(b) (i) zero $\underline{\&} 0.625 \mathrm{~s}$ or $0.625 \mathrm{~s} \underline{\&} 1.25 \mathrm{~s}$ or $1.25 \mathrm{~s} \underline{\&} 1.875 \mathrm{~s}$ or $1.875 \mathrm{~s} \underline{\&} 2.5 \mathrm{~s}$
(ii) 1. $\omega=2 \pi / T$ and $v_{0}=\omega x_{0}$
$\omega=2 \pi / 1.25$
$=5.03 \mathrm{rad} \mathrm{s}^{-1}$
$v_{0}=5.03 \times 3.2$
$=16.1 \mathrm{~cm} \mathrm{~s}^{-1}$ (allow 2 s.f.)
2. $v=\omega \sqrt{\left(x_{0}^{2}-x^{2}\right)}$
either $\quad 1 / 2 \omega a=\omega \sqrt{\left(x_{0}^{2}-x^{2}\right)} \quad$ or $\quad 1 / 2 \times 16.1=5.03 \sqrt{\left(3.2^{2}-x^{2}\right)} \quad$ C1
$x_{0}{ }^{2} / 4=x_{0}{ }^{2}-x^{2} \quad 2.58=3.2^{2}-x^{2}$ $x=2.8 \mathrm{~cm}$
$x=2.8 \mathrm{~cm}$
A1
(c) sketch: loop with origin at its centre
M1
correct intercepts \& shape based on (b)(ii)
A1

5 (a) work done/energy in moving unit positive charge
(b) (i) $V=q / 4 \pi \varepsilon_{0} r$
at $16 \mathrm{kV}, q=3.0 \times 10^{-8} \mathrm{C}$
$r=\left(3.0 \times 10^{-8}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 16 \times 10^{3}\right)$
$=1.69 \times 10^{-2} \mathrm{~m}$ (allow 2 s.f.)
C1
(allow any answer which rounds to 1.7×10^{-2})
(ii) energy is/represented by area 'below' line C1
energy $=1 / 2 q \mathrm{~V}$

$$
=1 / 2 \times 24 \times 10^{3} \times 4.5 \times 10^{-8}
$$

$=5.4 \times 10^{-4} \mathrm{~J}$
(c) $V=q / 4 \pi \varepsilon_{0} r$ and $E=q / 4 \pi \varepsilon_{0} r^{2}$ giving $E r=V$
$2.0 \times 10^{6} \times 1.7 \times 10^{-2}=V$
C1
$V=3.4 \times 10^{4} \mathrm{~V}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	43

6 (a) for the two capacitors in parallel, capacitance $=96 \mu \mathrm{~F}$ for complete arrangement, $1 / C_{T}=1 / 96+1 / 48$ $C_{T}=32 \mu \mathrm{~F}$
(b) p.d. across parallel combination is one half p.d. across single capacitor

7 (a) either charge exists in discrete and equal quantities or multiples of elementary charge $/ \mathrm{e} / 1.6 \times 10^{-19} \mathrm{C}$
(b) (i) force due to magnetic field must be upwards
(ii) sketch showing: deflection consistent with force in (b)(i)

8 (a) discrete amount/packet/quantum of energy
of electromagnetic radiation/EM radiation
(b) (i) $E=h c / \lambda$

$$
=\left(6.63 \times 10^{-34} \times 3.0 \times 10^{8}\right) /\left(570 \times 10^{-9}\right)=3.49 \times 10^{-19} \mathrm{~J}
$$

(ii) 1. number $=\left(2.7 \times 10^{-3}\right) /\left(3.5 \times 10^{-19}\right)$

$$
=7.7 \times 10^{15}
$$

A1
2. momentum of photon $=h / \lambda$

$$
\begin{align*}
& =\left(6.63 \times 10^{-34}\right) /\left(570 \times 10^{-9}\right) \\
& =1.16 \times 10^{-27} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{C1}
\end{align*}
$$

$$
\begin{aligned}
\text { change in momentum } & =1.16 \times 10^{-27} \times 7.7 \times 10^{15} \\
& =8.96 \times 10^{-12} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

A1
(allow $E=p c$ route to 9×10^{-12})

$$
\text { (c) } \begin{aligned}
\text { pressure } & =(\text { change in momentum per second }) / \text { area } \\
& =\left(8.96 \times 10^{-12}\right) /\left(1.3 \times 10^{-5}\right) \\
& =6.9 \times 10^{-7} \mathrm{~Pa}
\end{aligned}
$$

9 (a) activity $=\left(1.7 \times 10^{14}\right) /\left(2.5 \times 10^{6}\right)$

$$
\begin{equation*}
=6.8 \times 10^{7} \mathrm{~Bq} \mathrm{~kg}^{-1} \tag{1}
\end{equation*}
$$

A1
(b) (i) energy released per second in 1.0 kg of steel

$$
\begin{aligned}
& =6.8 \times 10^{7} \times 0.067 \times 1.6 \times 10^{-13} \\
& =7.3 \times 10^{-7} \mathrm{~J}
\end{aligned}
$$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9702	43

(ii) this is a very small quantity of energy so steel will not be warm
(iii) $A=A_{0} \mathrm{e}^{-\lambda t}$ and $\lambda t / 1 / 2=\ln 2$
$400=\left(6.8 \times 10^{7}\right) \exp (-[\ln 2 \times t] / 92)$
C1
$t=1600$ years
or

$$
\begin{align*}
& A=A_{0} / 2^{n} \\
& n=17.4 \tag{C1}\\
& t=17.4 \times 92=1600 \text { years } \tag{A1}
\end{align*}
$$

(C1)

Section B

10 (a) (i) thermistor/thermocouple
(ii) quartz crystal/piezoelectric crystal or transducer/microphone
(b) (i) $V_{\text {OUT }}=-5 \mathrm{~V}$

A1
inverting input is positive or V_{-}is positive or $\mathrm{V}_{-}>\mathrm{V}_{+}$so $V_{\text {OUT }}$ is negative
B1 op-amp has very large/infinite gain and so saturates
$\begin{array}{ll}\text { (ii) sketch: } V_{\text {OUT }} \text { switches from }(+) \text { to }(-) \text { when } V_{\text {IN }} \text { is zero } & \text { B1 } \\ V_{\text {OUT }} \text { is }+5 \mathrm{~V} \text { or }-5 \mathrm{~V} & \text { M1 }\end{array}$
$V_{\text {OUt }}$ is negative when $V_{\text {IN }}$ is positive (or $v . v$. .)

11 (a) product of density and speed
(not "speed of light", 0/2)
(b) (i) $\quad \alpha=(6.4-1.7)^{2} /(6.4+1.7)^{2}$

$$
=0.34
$$

(ii) $I / I_{0}=\mathrm{e}^{-\mu x}$

$$
=\exp \left(-23 \times 3.4 \times 10^{-2}\right)
$$

$$
=0.46
$$

(iii) $I_{R} / I=(0.46)^{2} \times 0.34$

$$
=0.072
$$

12 (a) analogue: continuously variable
(b) (i) 5
Page 6 Mark Scheme Syllabus Paper
Cambridge International AS/A Level - October/November 2014
(c) greater number of voltage/signal levels B1
smaller step heights in reproduced signal B1
smaller voltage/signal changes can be seen B1
13 (a) same carrier frequencies can be re-used M1
but not in neighbouring cells/possible to use more handsets A1
(b) e.g. wavelength is shortso aerial on mobile phone conveniently short(A1)
e.g. limited range (M1)
so low power/less interference between cells (A1)
e.g. large number of channels/greater bandwidth (M1)
so more simultaneous callers(A1)[4]

