CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October／November 2015 series

9702 PHYSICS

9702／22
Paper 2 （AS Structured Questions），maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

1
(a) $v=f \lambda$ C1 $\lambda=\left(3.0 \times 10^{8}\right) /\left(4.6 \times 10^{20}\right)$ C1

$$
\left(=6.52 \times 10^{-13}=\right) 0.65(2) \mathrm{pm}
$$

A1
(b) $t=\left(8.5 \times 10^{16}\right) /\left(3.0 \times 10^{8}\right)$ C1 $\left(=2.83 \times 10^{8}=\right) 0.28(3) \mathrm{Gs}$ A1
(c) mass, power and temperature all underlined and no others
(d) (i) arrow in the direction 30° to 40° south of east

B1
(ii) triangle of velocities completed (i.e. correct scale diagram) or correct working given
e.g. $\left[14^{2}+8.0^{2}-2(14)(8.0) \cos 60^{\circ}\right]^{1 / 2}$
or $\left[\left(14-8.0 \cos 60^{\circ}\right)^{2}+\left(8.0 \sin 60^{\circ}\right)^{2}\right]^{1 / 2}$
resultant velocity $=12(.2)($ or 12.0 to 12.4 from scale diagram $) \mathrm{m} \mathrm{s}^{-1}$

2 (a) (i) $v=u+a t$
$0=3.6-3.0 t$
$t(=3.6 / 3.0)=1.2 \mathrm{~s}$
A1
(ii) (distance to rest from $P=(3.6 \times 1.2) / 2=) 2.2(2.16) \mathrm{m}$

A1
or
$\left[0-(3.6)^{2}\right] /[2 \times(-3.0)]=2.2(2.16) \mathrm{m}$
or
$3.6 \times 1.2-1 / 2 \times 3.0 \times(1.2)^{2}=2.2(2.16) \mathrm{m}$
or
$0+1 / 2 \times 3.0 \times(1.2)^{2}=2.2(2.16) \mathrm{m}$
(b) distance $=6.0-2.16(=3.84) \quad \mathrm{C} 1$

$$
v^{2}=u^{2}+2 a s=2 \times 3.0 \times 3.84(=23.04)
$$

or
$x+2 \times 2.16=6.0$ gives $x=1.68(m)$
$v^{2}=3.6^{2}+2 \times 1.68 \times 3.0(=23.04)$
or correct method with intermediate time calculated ($t=1.6 \mathrm{~s}$ from Q to R)
$v=4.8 \mathrm{~m} \mathrm{~s}^{-1}$ A0
[2]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	22

(c) straight line from $v=3.6 \mathrm{~m} \mathrm{~s}^{-1}$ to $v=0$ at $t=1.2 \mathrm{~s}$
straight line continues with the same gradient as v changes sign
straight line from $v=0$ intercept to $v=-4.8 \mathrm{~m} \mathrm{~s}^{-1}$
B1
(d) difference in KE $=1 / 2 m\left(v^{2}-u^{2}\right)$

$$
=0.5 \times 0.45\left(4.8^{2}-3.6^{2}\right)[=5.184-2.916] \quad \mathrm{C} 1
$$

$$
=2.3(2.27) \mathrm{J}
$$

3 (a) (i) $k=F / x$ or $1 /$ gradient C1

$$
\left(k=4.4 /\left(5.4 \times 10^{-2}\right)=\right) 81(81.48) \mathrm{Nm}^{-1}
$$

(ii) work done $=$ area under line or $1 / 2 F x$ or $1 / 2 k x^{2}$

$$
\begin{equation*}
\left(=0.5 \times 4.4 \times 5.4 \times 10^{-2}=\right) 0.12(0.119) \mathrm{J} \tag{A1}
\end{equation*}
$$

(b) (i) kinetic energy/ E_{k} of trolley/T (and block) changes to EPE/strain $\begin{aligned} & \text { B1 } \\ & \text { energy/elastic energy of spring }\end{aligned}$

EPE changes to KE of trolley/T and KE of block or to give lower KE to trolley
(ii) change in momentum $=m(v+u)$

$$
=0.25(0.75+1.2)=0.49(0.488) \mathrm{Ns}
$$

4 (a) product of the force and the perpendicular distance to/from a point/pivot
(b) (i) $4000 \times 2.8 \times \sin 30^{\circ}$ or $500 \times 1.4 \times \sin 30^{\circ}$ or $T \times 2.8$
or 4000×1.4 or 500×0.7
$4000 \times 2.8 \times \sin 30^{\circ}+500 \times 1.4 \times \sin 30^{\circ}=T \times 2.8$ M1
hence $T=2100(2125) \mathrm{N}$ A0
(ii) $\left(T_{v}=2100 \cos 60^{\circ}=\right) 1100(1050) \mathrm{N}$ A1
(iii) there is an upward (vertical component of) force at A B1
upward force at $\mathrm{A}+T_{\mathrm{v}}=$ sum of downward forces/weight+load/4500 N

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	22

5
(a) (i) $I=V / R \quad \mathrm{C}$
$(=240 / 1500=) 0.16 \mathrm{~A}$
A1
(ii) $I_{2}=0.40-0.16(=0.24)$

C1
$0.24(350+R)=240$
$R=650 \Omega$
A1
[2]
(iii) power $=I V$ or $I^{2} R$ or V^{2} / R
ratio $=(84 \times 0.24) /(88 \times 0.16)$
or $\left[(0.24)^{2} \times 350\right] /\left[(0.16)^{2} \times 550\right]$
or $\left(84^{2} / 350\right) /\left(88^{2} / 550\right)$
or 20.16/14.08
$=1.4(3)$
A1
-
[2]
(b) (i) p.d. across 350Ω resistor $=0.24 \times 350$
or p.d. across 550Ω resistor $=0.16 \times 550$
$V_{350}=84(\mathrm{~V})$ and $V_{550}=88(\mathrm{~V})$ gives $V_{\mathrm{AB}}=4.0 \mathrm{~V}$ or $V_{950}=152(\mathrm{~V})$ and $V_{R}=156 \mathrm{~V}$ gives $V_{\mathrm{AB}}=4.0 \mathrm{~V}$ A1
(ii) p.d. across R increases or potential at B increases or V_{350} decreases hence $V_{A B}$ increases

6 (a) internal resistance causes lost volts
p.d. across lamp is less than 12 V , power is less than 48 W

B1
(b) (i) greater lost volts or p.d. across cell/lamp reduced, less current in lamp B1
(ii) p.d. across lamp/current in lamp decreases, hence resistance decreases

7 (a) (i) 3.2 mm
A1 [1]
(ii) 20 mm

A1
(b) (i) energy is transferred/propagated (through the water) or wave profile/wavefronts move (outwards from dipper) so progressive
(ii) to produce waves with constant/zero phase difference/coherent waves B1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	22

(c) (i) path difference is λB1
water vibrates/oscillates with amplitude about $2 \times 3.2 \mathrm{~mm} \quad$ B1
(ii) path difference is $\lambda / 2$ so little/no motion/displacement/amplitude

8 (a) result: majority/most (of the α-particles) went straight through/were deviated by small angles
conclusion: most of the atom is (empty) space or size/volume of nucleus very small compared with atom
result: a small proportion were deflected through large angles or $>90^{\circ}$ or came straight backM1
conclusion: the mass or majority of mass is in a (very) small charged volume/region/nucleus A1
(b) $\rho=m / V$

C1
mass of atom and mass of nucleus (approx.) equal stated or cancelled or values given e.g. 63 u or $63 \times 1.66 \times 10^{-27}$
ratio $=\left(r_{\mathrm{A}}\right)^{3} /\left(r_{\mathrm{N}}\right)^{3}=\left(1.15 \times 10^{-10}\right)^{3} /\left(1.4 \times 10^{-14}\right)^{3}$
or
ratio $=\left(d_{A}\right)^{3} /\left(d_{N}\right)^{3}=\left(2.3 \times 10^{-10}\right)^{3} /\left(2.8 \times 10^{-14}\right)^{3}$

$$
=5.5 \times 10^{11}
$$

