MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Pa	age 2		Mark Scheme	Syllabus	Pap	er
		C	ambridge International AS/A Level – October/November 2015	9702	21	
1	(a)	curr	perature ent w amount of substance, luminous intensity)		B1 B1	[2]
	(b)	(i)	1. <i>E</i> = (stress/strain =) [force/area]/[extension/original length]]		
			units of stress: $kgm s^{-2}/m^2$ and no units for strain		B1	
			units of E : kg m ⁻¹ s ⁻²		A0	[1]
			2. units for <i>T</i> : s, <i>l</i> : m and <i>M</i> : kg			
			$K^2 = T^2 E / M l^3$ hence units: $s^2 kg m^{-1} s^{-2} / kg^3$ (= m ⁻⁴)		C1	
			units of K : m ⁻²		A1	[2]
		(ii)	% uncertainty in $E = 4\%$ (for T^2) + 0.6% (for l^3) + 0.1% (for M) + 3% = 7.7%	% (for <i>K</i> ²)	B1	
			$E = [(1.48 \times 10^5)^2 \times 0.2068 \times (0.892)^3] / (0.45)^2$ = 1.588 × 10 ¹⁰		C1	
			7.7% of $E = 1.22 \times 10^9$		C1	
			$E = (1.6 \pm 0.1) \times 10^{10} \mathrm{kg}\mathrm{m}^{-1}\mathrm{s}^{-2}$		A1	[4]
2	(a)	ps =	= 10^{-12} (s) or $T = 4 \times 50 \times 10^{-12}$ (s)		B1	
		v = 1	λ or $v = \lambda / T$		C1	
		λ =	$3.0\times10^8\times4\times50\times10^{-12}$		C1	
		=	0.06(0)m		A1	[4]
	(b)	150	$0 = 3.0 \times 10^8 \times 4 \times \text{time-base setting or } T = 5 \times 10^{-6} \text{s}$		C1	
		time	-base setting = 1.3 (1.25) μ s cm ⁻¹		A1	[2]
3	(a)		done is force \times distance moved in direction of force			
		or no v	ork done along PQ as no displacement/distance moved in direction	n of force	B1	
		worl force	done is same in vertical direction as same distance moved in directed	ction of	B1	[2]

Page 3		Mark Scheme	Syllabus	Раре	ər
	(Cambridge International AS/A Level – October/November 2015	9702	21	
(b)	(i)	at maximum height $t = 1.5$ (s) or $s = \frac{1}{2}(u + v)t$, $s = 11$ m and $t = 1.5$	= 1.5 s	C1	
		$V_v = 0 + 9.81 \times 1.5$ $V_v = (11 \times 2) / 1.5$			
		$= 15 (14.7) \mathrm{ms^{-1}}$		A1	[2]
	(ii)	straight line from (0,0) to (3.00, 25.5)		B1	[1]
	(iii)	at maximum height $V_{\rm h}$ = 25.5/3 (= 8.5 m s ⁻¹)		B1	
		ratio = $mgh/\frac{1}{2}mv^2$		C1	
		$= (2 \times 9.81 \times 11.0) / (8.5)^2$			
		= 3.0 (2.99)		A1	[3]
	(iv)	deceleration is greater/resultant force (weight and friction force) is	greater	M1	
		time is less		A1	[2]
4 (a)	der	nsity = mass/volume		C1	
. (a)		ss = $7900 \times 4.5 \times 24 \times 10^{-6} = 0.85$ (0.853)kg		M1	[2]
	ma	0.00 (0.000) kg			[-]
(b)	pre	ssure = force/area		C1	
	ford	$ce = W cos 40^{\circ}$		C1	
	pre	ssure = $(0.85 \times 9.81 \cos 40^{\circ})/24 \times 10^{-4}$			
		= 2.7 (2.66) × 10 ³ Pa		A1	[3]
(c)	F =	= ma		C1	
(0)		$\sin 40^\circ - f = ma$		C1	
				U1	
	0.8	$5 \times 9.81 \times \sin 40^\circ - f = 0.85 \times 3.8$			
	f (=	5.36 – 3.23) = 2.1 N [5.38 – 3.242 if 0.8532 kg is used for the mass	s]	A1	[3]

Pa	age 4		Mark Scheme	Syllabus	Рар	
		(Cambridge International AS/A Level – October/November 2015	9702	21	
5			gressive: all particles have same amplitude ionary: no nodes or antinodes or maximum to minimum/zero ampliti	ude	B1	
			gressive: adjacent particles are not in phase ionary: waves particles are in phase (between adjacent nodes)		B1	[2]
	(b)	(i)	wavelength 1.2 m (zero displacement at 0.0, 0.60 m, 1.2 m, 1.8 m, 2	2.4 m)		
			either peaks at 0.30 m and 1.5 m and troughs at 0.90 m and 2.1 m or vice versa (but not both)		B1	
			maximum amplitude 5.0 mm		B1	[2]
	((ii)	180° or π rad		A1	[1]
	(i	iii)	at $t = 0$ particle has kinetic energy as particle is moving		B1	
			at $t = 5.0$ ms no kinetic energy as particle is stationary so decrease in kinetic energy (between $t = 0$ and $t = 5.0$ ms)		B1	[2]
6	(a)	ene	ergy converted from chemical to electrical per unit charge		B1	[1]
	(b)	(i)	current = $E/(R + r)$		C1	
			= 6.0/(16 + 0.5) = 0.36 (0.364)A		A1	[2]
		(ii)	terminal p.d. = (0.36 × 16) = 5.8 ∨ or (6 − 0.36 × 0.5) = 5.8 ∨		A1	[1]
	(c)	(i)	use of $R = \rho l / A$ or proportionality with length and inverse proportionality with area or d^2		C1	
			$d/2$ and $l/2$ gives resistance of Z = $2R_{\rm Y}$ = 24 (Ω)		C1	
			R = resistance of parallel combination = $[1/24 + 1/12]^{-1}$ = 8(.0)(Ω)		A1	[3]
		(ii)	resistance of circuit less therefore current larger		B1	
			lost volts greater therefore terminal p.d. less		B1	[2]
	(d)	pov	ver = $I^2 R$ or VI or V^2/R		C1	
		cur	rent in second circuit (= 6.0/12.5) = 0.48(A)		B1	
		rati	$p = [(0.36)^2 \times 16] / [(0.48)^2 \times 12] = 0.75 [0.77 \text{ if full s.f. used}]$		B1	[3]

Ρ	age 5	Mark Scheme	Syllabus	Рар	er
		Cambridge International AS/A Level – October/November 2015	9702	21	
7	(a) ((i) curved path towards negative (-) plate (right-hand side)		B1	[1]
	((ii) range of α -particle is only few cm in air/loss of energy of the α -part to collision with air molecules/ionisation of the air molecules	icles due	B1	[1]
	(ii	ii) $V = E \times d$		C1	
		= $140 \times 10^{6} \times 12 \times 10^{-3}$ = 1.7 (1.68) MV		A1	[2]
	(b) β	β have opposite charge to α therefore deflection in opposite direction		B1	
	ļ	eta has a range of velocities/energies hence number of different deflection of the second	ns	B1	
	β have less mass or q/m is larger hence deflection is greater or				
		β with (very) high speed (may) have less deflection		B1	[3]
	, } 	β have less mass or q/m is larger hence deflection is greater or	ns		

(c)

emitted particle	change in Z	change in A
α-particle	-2	-4
β-particle	+1	0

A1 [1]