CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October／November 2015 series

9702 PHYSICS

9702／23
Paper 2 （AS Structured Questions），maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	23

1 (a) energy or $W: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
or
power or P : $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
intensity or $I: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ (from use of energy expression)
or
$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~m}^{-2}$ (from use of power expression)
indication of simplification to $\mathrm{kg} \mathrm{s}^{-3}$
(b) (i) $\rho: \mathrm{kgm}^{-3}, \mathrm{c}: \mathrm{ms}^{-1}, f: \mathrm{s}^{-1}, x_{0}: \mathrm{m}$ M1
substitution of terms in an appropriate equation and simplification to show K has no units
(ii) $I=20 \times 1.2 \times 330 \times(260)^{2} \times\left(0.24 \times 10^{-9}\right)^{2}$

$$
\begin{equation*}
=3.1 \times 10^{-11}\left(\mathrm{Wm}^{-2}\right) \tag{C1}
\end{equation*}
$$

$=31(30.8) \mathrm{pWm}^{-2}$
A1

2 (a) (i) (the loudspeakers) are connected to the same signal generator
B1
(ii) 1. the waves (that overlap) have phase difference of zero or path difference of zero and so
either constructive interference
or displacement larger
2. the waves (that overlap) have phase difference of $(n+1 / 2) \times 360^{\circ}$ or ($n+1 / 2$) $\times 2 \pi$ rad or path difference of ($n+1 / 2$) λ and so
either destructive interference
or displacements cancel/smaller
3. the waves (that overlap) are in phase or have phase difference of $n 360^{\circ}$ or $2 \pi n$ rad or path difference of $n \lambda$ and so
either constructive interference
or displacement larger
(b) time period $=0.002 \mathrm{~s}$ or 2 ms C1
wave drawn is half time period
amplitude 1.0 cm (same as Fig. 2.2)

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	23

3 (a) (i)

1. $s=u t+1 / 2 a t^{2}$
$192=1 / 2 \times 9.81 \times t^{2}$
C1
$t=6.3(6.26) \mathrm{s}$
A1
2. $\max E_{\mathrm{k}}(=m g h)=0.27 \times 9.81 \times 192$

C1
or
calculation of $v(=61.4)$ and use of $E_{\mathrm{K}}\left(=1 / 2 m v^{2}\right)=1 / 2 \times 0.27 \times(61.4)^{2}$
$\max E_{\mathrm{k}}=510(509) \mathrm{J}$
A1
(ii) velocity is proportional to time or velocity increases at a constant rate as acceleration is constant or resultant force is constant
(iii) use of $v=$ at or $v^{2}=2$ as or $E=1 / 2 m v^{2}$ to give $v=61(.4) \mathrm{ms}^{-1}$

B1
(b) (i) R increases with velocity

B1
resultant force is $m g-R$ or resultant force decreases
acceleration decreases
B1
(ii) at $v=40 \mathrm{~m} \mathrm{~s}^{-1}, R=0.6(\mathrm{~N})$
$0.27 \times 9.8-0.6=0.27 \times a$
$a=7.6(7.58) \mathrm{m} \mathrm{s}^{-2}$
A1
(iii) $R=$ weight for terminal velocity
either weight requires velocity to be about $80 \mathrm{~m} \mathrm{~s}^{-1}$
or \quad at $60 \mathrm{~m} \mathrm{~s}^{-1}, R$ is less than weight
so does not reach terminal velocity

4 (a) (i) reaction/vertical force $=$ weight $-P \cos 60^{\circ}$

$$
\begin{aligned}
& =180-35 \cos 60^{\circ} \\
& =160(163) \mathrm{N}
\end{aligned}
$$A1

(ii) work done $=35 \sin 60^{\circ} \times 20$

$$
=610(606) \mathrm{J}
$$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	23

(b) (i) work done by force $P=$ work done against frictional force
(ii) horizontal component of P is equal and opposite to frictional force
vertical component of $P+$ normal reaction force equal and opposite to weight
B1

5 (a) (i) resistance $=V / I$
very high/infinite resistance at low voltages
resistance decreases as V increases
(ii) p.d. from graph $0.50(\mathrm{~V})$

$$
\begin{aligned}
\text { resistance } & =0.5 /\left(4.4 \times 10^{-3}\right) \\
& =110(114) \Omega
\end{aligned}
$$

(b) (i) current $(=1.2 / 375)=3.2 \times 10^{-3} \mathrm{~A}$ A1
(ii) current in diode $=4.4 \times 10^{-3}(\mathrm{~A})$
total resistance $=1.2 / 4.4 \times 10^{-3}=272.7(\Omega)$
C1
resistance of $R_{1}=272.7-113.6=160(159) \Omega$
or

$$
\begin{align*}
\text { p.d. across diode } & =0.5 \mathrm{~V} \text { and p.d. across } \mathrm{R}_{1}=0.7 \mathrm{~V} \tag{C1}\\
\text { resistance of } \mathrm{R}_{1} & =0.7 / 4.4 \times 10^{-3} \\
& =160(159) \Omega \tag{A1}
\end{align*}
$$

200,
(iii) power $=I V$ or $I^{2} R$ or V^{2} / R
ratio $=(4.4 \times 0.5) /(3.2 \times 1.2)$
or $\left[(4.4)^{2} \times 114\right] /\left[(3.2)^{2} \times 375\right]$
or $\left[(0.5)^{2} \times 375\right] /\left[114 \times(1.2)^{2}\right]$

$$
=0.57
$$

A1

7 (a) stress or $\sigma=F / A$
max. tension $=$ UTS $\times A=4.5 \times 10^{8} \times 15 \times 10^{-6}=6800(6750) \mathrm{N}$
(b) $\rho=m / V$

C1
weight $=m g=\rho V g=\rho A L g$
$6750=7.8 \times 10^{3} \times 15 \times 10^{-6} \times L \times 9.81$
C1
$L=5.9(5.88) \times 10^{3} \mathrm{~m}$
or
maximum mass $=6750 / 9.81=688 \mathrm{~kg}$
mass per unit length $=\rho A=0.117 \mathrm{~kg} \mathrm{~m}^{-1}$
$L=688 / 0.117=5.9 \times 10^{3} \mathrm{~m}$
or
maximum mass $=6750 / 9.81=688 \mathrm{~kg}$
volume $=m / \rho=0.0882 \mathrm{~m}^{3}=L A$
$L=0.0882 / 15 \times 10^{-6}=5.9 \times 10^{3} \mathrm{~m}$

8 (a) mass-energy proton number or charge nucleon number
(b) (i) $E_{\mathrm{k}}=1 / 2 m v^{2}$ and $p=m v$ with working leading to

$$
\left[\text { via } E_{\mathrm{k}}=1 / 2 m^{2} v^{2} / m \text { or } 1 / 2 m(p / m)^{2}\right]
$$

$$
\begin{equation*}
\text { to } E_{\mathrm{k}}=\frac{p^{2}}{2 m} \tag{B1}
\end{equation*}
$$

(ii) $p=\left(2 E_{k} m\right)^{1 / 2}$ hence $\left(2\left[E_{k} m\right]_{\alpha}\right)^{1 / 2}=\left(2\left[E_{k} m\right]_{T h}\right)^{1 / 2}$

C1
$2 \times\left[E_{\mathrm{k}}\right]_{\mathrm{Th}} \times 234=2 \times 6.69 \times 10^{-13} \times 4$
$\left[E_{k}\right]_{\text {Th }}=1.14 \times 10^{-14} \mathrm{~J}$

$$
=71(.5) \mathrm{keV}
$$

or
calculation of speed of α-particle $=1.42 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
calculation of momentum of α-particle/nucleus $=9.43 \times 10^{-20} \mathrm{Ns}$

$$
\begin{align*}
{\left[E_{k}\right]_{\mathrm{Th}} } & =1.14 \times 10^{-14} \mathrm{~J} \tag{C1}\\
& =71(.5) \mathrm{keV}
\end{align*}
$$

