CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	41

Section A

1 (a) (i) gravitational force provides/is the centripetal force

$$
G M m_{\mathrm{s}} / x^{2}=m_{\mathrm{s}} v^{2} / x\left(\text { allow } x \text { or } r \text {, allow } m \text { or } m_{\mathrm{s}}\right) \quad \text { M1 }
$$

$E_{\mathrm{K}}=1 / 2 m_{\mathrm{S}} v^{2}$ and clear algebra leading to $E_{\mathrm{K}}=G M m_{\mathrm{S}} / 2 x$ A1
(ii) $E_{P}=-G M m_{\mathrm{S}} / x$ (sign essential)
(iii) $E_{\mathrm{T}}=E_{\mathrm{K}}+E_{\mathrm{P}}$

$$
=G M m_{S} / 2 x-G M m_{S} / x \quad \mathrm{C} 1
$$

$$
=- \text { GMm } / 2 x \text { (allow ECF from (a)(ii)) }
$$

(b) (i) decreases
(ii) decreases
(iii) decreases
(iv) increases

B1
(for answers in (b) allow ECF from (a)(iii))

2 (a) obeys the equation $p V=n R T$ or $p V / T=$ constant
(b) (i) temperature rise $=48 \mathrm{~K}$
(ii) $\left\langle c^{2}\right\rangle \propto T$ or equivalent C1

$$
\left\langle c^{2}\right\rangle=(353 / 305) \times 1.9 \times 10^{6}
$$

C1

$$
c_{\text {r.m.s. }}=1480 \mathrm{~m} \mathrm{~s}^{-1}
$$

3 (a) heat/thermal energy gained by system or energy transferred to system by heating plus work done on the system or minus work done by the system
(b) (i) either volume decreases so work done on the system or small volume change so work done on system negligibleinternal energy increases

4 (a) free: (body oscillates) without any loss of energy/no resistive forces/no external forces applied
forced: continuous energy input (required)/body is made to vibrate by an (external) periodic force/driving oscillator

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	41

(b) (i) idea of resonance
B1
$\begin{array}{ll}\text { maximum amplitude at natural frequency } & \mathrm{B} 1\end{array}$
frequency $=2.1 \mathrm{~Hz}$ (allow 2.08 to 2.12 Hz) B1
(ii) peak not very sharp/amplitude not infinite so frictional forces are present
B1
(c) $v=\omega x_{0}$
$=2 \pi \times 2.1 \times 4.7 \times 10^{-2}$ (allow ECF from (b)(i))

$$
=0.62 \mathrm{~m} \mathrm{~s}^{-1}
$$ C1

5 (a) (i) force proportional to the product of the two/point charges and inversely proportional to the square of their separation
(ii) 1. force radially away from sphere/to right/to east
2. (maximum) at/on surface of sphere or $x=r$
3. $F \propto 1 / x^{2}$ or $F=q_{1} q_{2} /\left(4 \pi \varepsilon_{0} x^{2}\right)$ C1 ratio $=16$ A1
(b) $E=q /\left(4 \pi \varepsilon_{0} x^{2}\right)$ or $E \propto q$ C1

$$
\begin{aligned}
\text { maximum charge } & =(2.0 / 1.5) \times 6.0 \times 10^{-7} \\
& =8.0 \times 10^{-7} \mathrm{C}
\end{aligned}
$$

additional charge $=2.0 \times 10^{-7} \mathrm{C}$ A1

6 (a) (i) force $=m g$ M1 along the direction of the field/of the motion A1
(ii) no force
(b) (i) force due to E-field downwards so force due to B-field upwards B1
into the plane of the paper B1
(ii) force due to magnetic field $=B q v$B1
force due to electric field $=E q \quad$ B1
(use of F_{B} and F_{E} not explained, allow 1/2)
forces are equal (and opposite) so $B v=E$ or $E q=B q v$ so $E=B v$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	41

(b) $E_{\text {MAX }}$ corresponds to electron emitted from surface electron (below surface) requires energy to bring it to surface, so less than $E_{\text {max }}$
B1
B1

$$
\begin{aligned}
f_{0} & =c / \lambda_{0} \\
& =3.00 \times 10^{8} \times 1.85 \times 10^{6} \\
& =5.55 \times 10^{14} \mathrm{~Hz}
\end{aligned}
$$

(ii) $\Phi=h f_{0}$

$$
\begin{align*}
& =6.63 \times 10^{-34} \times 5.55 \times 10^{14} \text { (allow ECF from (c)(i)) } \\
& =3.68 \times 10^{-19} \mathrm{~J} \tag{A1}
\end{align*}
$$

$\begin{array}{lr}\text { (d) sketch: straight line with same gradient } & \text { M1 } \\ \text { intercept between } 1.0 \text { and } 1.5 & \text { A1 }\end{array}$

8 (a) nucleus: small central part/core of an atom
nucleon: proton or a neutron particle contained within a nucleus
(b) (i) 1. decay constant $=\ln 2 /(3.8 \times 24 \times 3600)$

$$
=2.1 \times 10^{-6} \mathrm{~s}^{-1}
$$

2. $A=\lambda N$

$$
\begin{array}{ll}
97=2.1 \times 10^{-6} \times N & \mathrm{C} 1 \\
N=4.6 \times 10^{7} & \mathrm{~A} 1
\end{array}
$$

(ii) $1.0 \mathrm{~m}^{3}$ contains $\left(6.02 \times 10^{23}\right) /\left(2.5 \times 10^{-2}\right)$ air molecules

$$
\begin{aligned}
\text { ratio } & =\left(4.6 \times 10^{7} \times 2.5 \times 10^{-2}\right) /\left(6.02 \times 10^{23}\right) \\
& =1.9 \times 10^{-18}
\end{aligned}
$$

C1 B1 C1
A1 C1
A1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	41

Section B

9
(a) (i) (+) 3.0 V

B1 [1]
(ii) potential $=6.0 \times\{2.0 /(2.0+2.8)\} \quad$ C1

$$
=2.5 \mathrm{~V}
$$

(iii) potential $=6.0 \times\{2.0 /(2.0+1.8)\}$

$$
=3.2 \mathrm{~V}
$$

(b) at $10^{\circ} \mathrm{C}, V_{\mathrm{A}}>V_{\mathrm{B}}$
M1
$V_{\text {out }}$ is -9.0 V (allow "negative saturation") A1
at $20^{\circ} \mathrm{C}, V_{\text {OUt }}$ is $+9.0 \mathrm{~V} \quad \mathrm{~B} 1$
(if $20^{\circ} \mathrm{C}$ considered initially, mark as M1,A1,B1)
sudden switch (from -9 V to +9 V) when $V_{\mathrm{A}}=V_{\mathrm{B}}$

10 (a) sharpness: clarity of edges/resolution (of image) B1 contrast: difference in degree of blackening (of structures) B1
(b) (i) X-rays produced when (high speed) electrons hit target/anode B1 either electrons have been accelerated through 80 kV or electrons have (kinetic) energy of 80 keV B1
(ii) $\begin{array}{rlrl}I_{\mathrm{T}} / I & =\mathrm{e}^{-3.0 \times 1.4} & \mathrm{C} 1 \\ & =0.015 & \mathrm{~A} 1\end{array}$
$=0.015$
(c) for good contrast, μx or $\mathrm{e}^{\mu x}$ or $\mathrm{e}^{-\mu x}$ must be very different $\quad \mathrm{B} 1$
μx or $\mathrm{e}^{\mu x}$ or $\mathrm{e}^{-\mu x}$ for bone and muscle will be different than that for muscle
M1 so good contrast A1

11 (a) frequency of carrier wave varies M1 A1
A1
A1 A1 in synchrony with the displacement of the signal/information wave A1
(b) (i) 5.0 V
(ii) 720 kHz A1
(iii) 780 kHz A1
(iv) $7500 \quad \mathrm{~A} 1$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9702	41

12 (a) (i) (gradual) loss of power/intensity/amplitude (not "signal") B1 [1]
(ii) e.g. noise can be eliminated (not "there is no noise") M1
because pulses can be regenerated A1
e.g. much greater data handling/carrying capacity M1
because many messages can be carried at the same time/greater A1
bandwidth
e.g. more secure (M1)
because it can be encrypted (A1)
e.g. error checking (M1)
because extra information/parity bit can be added (A1)
(allow any two sensible suggestions with 'state' M1 and 'explain' A1)
(b) attenuation $=10 \lg (145 / 29)(=7.0)$
attenuation per unit length $=7.0 / 36$

$$
=0.19 \mathrm{~dB} \mathrm{~km}^{-1}
$$

