MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme Syllabus			
		(Cambridge International AS/A Level – October/November 2015	9702	43	
1	(a)	(gra and <i>eith</i>	avitational) force proportional to product of masses d inversely proportional to square of separation <i>her</i> point masses <i>or</i> particles <i>or</i> 'size' ≪ separation		M1 A1	[2]
	(b)	gra	vitational force provides the centripetal force		B1	
		eith eith	ther $GMm/x^2 = mx\omega^2$ or mv^2/x ther $\omega = 2\pi/T$ or $v = 2\pi x/T$ and working to $GM = 4\pi^2 x^3/T^2$		M1 A1	[3]
	(c)	eith	ner use of gradient of graph or line through origin so can use singl or line shown extrapolated to origin	e point	B1	
		gra 6.6	dient = $(4.5 \times 10^{14})/0.35$ 7 × 10 ⁻¹¹ × <i>M</i> = 4 π^2 × $(4.5 \times 10^{14} \times 10^9)/(0.35 \times \{24 \times 3600\}^2)$			
		cor cor <i>M</i> =	rect conversion for km^3 and power of 10 rect conversion for day ² = 1.02 \times 10 ²⁶ kg		C1 C1 A1	[4]
2	(a)	tota no mo tim larg	al volume of molecules negligible compared to that of containing ves intermolecular forces lecules in random motion e of collision small compared with the time between collisions ge number of molecules	sel		
		any	/ two		B2	[2]
	(b)	in a	a real gas there is a range of velocities <i>or</i> must take the average of <i>v</i>	2	B1	[1]
	(c)	(i)	either $p = \frac{1}{3}\rho < c^2 >$			
			or $1.0 \times 10^5 = \frac{1}{3} \times 1.2 \times \langle c^2 \rangle$		C1	
			$< c^2 > = 2.5 \times 10^5$ $c_{r.m.s.} = 500 \mathrm{m s^{-1}}$		C1 A1	[3]
		(ii)	$T \propto \langle c^2 \rangle$		C1	
			$< c^{->} = 2.5 \times 10^{\circ} \times 480/300$ = 4.0 × 10 ⁵ m ² s ⁻² (allow ECF from (c)(i))		A1	[2]
3	(a)	sar no	ne temperature (net) transfer of thermal energy (between the bodies)		B1 B1	[2]
	(b)	(i)	41.3 K		B1	[1]
		(ii)	330.4 K		B1	[1]

Page 3	Mark Scheme		Paper	
	Cambridge International AS/A Level – October/November 2015	9702	43	

(c)	ΔE_{P}	< =	$\frac{3}{2}$ × 1.9 × 60				
		= 171 J					
	work done = $p \Delta V$ = 1.2 × 10 ⁵ × 950 × 10 ⁻⁶ = 114 J						
	the	rmal	energy = 114 + 171 = 285 (290) J	A1	[4]		
(a)	acc	eler	ation/force proportional to distance from a fixed point or displacement	M1			
	eith or	ner	acceleration/force and displacement in opposite directions acceleration/force (always) directed towards a fixed point/mean position/equilibrium position	A1	[2]		
(b)	hρg h×	g = / 790	Mg/A × 4.9 × 10 ⁻⁴ = 70 × 10 ⁻³ leading to <i>h</i> = 0.18 m or 18 cm	B1 A1	[2]		
(c)	(i)	1.	$\omega^{2} = (790 \times 4.9 \times 10^{-4} \times 9.81) / (70 \times 10^{-3}) = 54.25$	C1			
			ω = 7.37 (rad s ⁻¹) period (= $2\pi / \omega$) = 0.85 s	C1			
			$t_1 = 0.43 \text{ s}$	A1	[3]		
		2.	$t_3 = 1.28 \text{ s} (allow 2 \text{ s.f.})$	A1	[1]		
	(ii)) energy of peak = $\frac{1}{2}M\omega^2 x_0^2$		B1			
		cha	ange = $\frac{1}{2} \times 70 \times 10^{-3} \times 54.25 \{(2.2 \times 10^{-2})^2 - (1.0 \times 10^{-2})^2\}$ = 7.3 × 10 ⁻⁴ J	C1 A1	[3]		

4

Page 4			Mark Scheme Syl		Syllabus	Pape	oer	
		Car	nbridge International AS/A	Level – October/November 2015	9702	43		
5	(a)	charges in metal do not move no (resultant) force on charges so no (electric) field (allow 1/2 for "no field inside sphere")			B1 B1	[2]		
	(b)	either	average field strength	$= \frac{1}{2} (28 + 54) \text{ NC}^{-1}$		C1		
			average force	= $8.5 \times 10^{-9} \times \frac{1}{2} (28 + 54)$ = $3.49 \times 10^{-7} N$		C1		
			change in potential energy	= $3.49 \times 10^{-7} \times 2.0 \times 10^{-2}$ = 7.0×10^{-9} . (allow 1.s.f.)		Α1		
		(allow range 54 ± 1)						
		or	(for a point charge) $V = Ex$			(C1)		
			$\Delta V = (54 \times 5.0 \times 10^{-2}) - (28)$	\times 7.0 \times 10 ⁻²)		(C1)		
			change in potential energy	= $8.5 \times 10^{-9} \times (2.70 - 1.96)$ = $6.3 \times 10^{-9} \downarrow (allow 1.8 f)$		(A1)		
		(allow	range 54 ± 1)			(, (,)		
		or	ΔV is area under curve $\Delta V = 0.74 V$			(C1) (C1)		
			change in potential energy	= $8.5 \times 10^{-9} \times 0.74$ = 6.3×10^{-9} J (<i>allow 1 s.f.</i>)		(A1)	[3]	
		(allow	range 0.70 to 0.84)			()		
6	(a)	magne magne fields s	etic fields are equal in magnit etic fields are opposite in dire superpose/add/cancel to give	ude/strength/flux density ction e zero/negligible resultant field		M1 M1 A1	[3]	
	(b)	core c or field chang (by Fa by Ler	auses increase in magnetic fl d induced in core ing flux threads/cuts the turns raday's law) an e.m.f. is indu nz's law, this e.m.f. opposes th	lux in the solenoid/induced poles in o s on the solenoid ced in the solenoid he battery e.m.f.	core	B1 M1 A1 A1	[4]	
7	(a)	(i) V ₀	₀(= 14 √2) = 19.8 (20) V			A1	[1]	
		(ii) ω	(= $2\pi \times 750$) = 4700 rad s ⁻¹			A1	[1]	
	(b)	large a	amount of charge required to	charge capacitor		M1		
		capaci <i>or</i> cap	itor would charge and dischar acitor would charge and disc	rge rapidly/in a very short time harge 750/1500 times per second		M1		
		I = Q/t, so large current				A1	[3]	

Page 5		5	Mark Scheme	Syllabus	Pap	er	
			Cambridge International AS/A Level – October/November 2015 9702				
8	(a)	hc. h =	$\lambda = \Phi + E_{MAX}$ Planck constant, c = speed of light/e.m. radiation		M1 A1	[2]	
	(b)	(i)	gradient of line is <i>hc h</i> and <i>c</i> are both constants		M1 A1	[2]	
		(ii)	$ \Phi = 2.28 \times 1.6 \times 10^{-19} = 3.65 \times 10^{-19} (J) $		C1		
		$hc/\lambda_0 = 3.65 \times 10^{-19}$					
			$ \lambda_0 = (6.63 \times 10^{-34} \times 3.0 \times 10^8) / (3.65 \times 10^{-19}) $ = 5.45 × 10 ⁻⁷ m		C1 A1	[3]	
9	(a)	 (a) energy required to separate the nucleons (in a nucleus) or energy required to separate the protons and neutrons in a nucleus (or energy released when nucleons combine (to form a nucleus)/energy released when protons and neutrons combine to form a nucleus) 			M1		
		eiti (eii	either completely or to infinity (either free protons and neutrons or from infinity)				
	(b)	(i)	<i>either</i> different forms of same element <i>or</i> nuclei having same number protons with different numbers of neutrons	er of	M1 A1	[2]	
		(ii)	1784 MeV (<i>accept min.</i> 3 s.f.) 7.57 MeV		A1 A1	[2]	
	(c)	(i)	$\lambda = \ln 2 / (7.1 \times 10^8 \times 365 \times 24 \times 3600) = 3.1 \times 10^{-17} \text{s}^{-1}$		B1	[1]	
		(ii)	$A = \lambda N 5000 = 3.1 \times 10^{-17} \times N N = 1.61 \times 10^{20}$		C1		
			mass = $235 \times (1.61 \times 10^{20})/(6.02 \times 10^{23})$ = 0.063 g (accept min. 2 s.f.)		C1 A1	[3]	

Page 6		6	Mark Scheme Syllabus		Paper	
		Cambridge International AS/A Level – October/November 2015 9702				
			Section B			
10	(a)	cor sep dio (<i>igr</i>	rect LED symbol parately connected between V_{OUT} and earth with opposite polarities de B 'pointing' from V_{OUT} to earth nore protective resistors)		B1 M1 A1	[3]
	(b)	dio dio rela swi (<i>if a</i> one	de in V _{OUT} line de 'pointing' towards V _{OUT} from earth ay coil connected between V _{OUT} and earth tch connected across lamp a diode is placed across the relay it must point down otherwise max. 2/4; a diode but wrong direction max. 3/4)		M1 A1 M1 A1	[4]
11	(a)	e.g any	. scattering (in metal) non-parallel beam (not just "A closer than B") reflection (from metal) diffraction in the metal/lattice <i>two</i>		B2	[2]
	(b)	(i)	1. ratio = $e^{\mu x}$ = $exp(0.27 \times 4.0)$ = 2.94 (2.9)		C1 A1	[2]
			2. ratio = $\exp(0.27 \times 2.5) \times \exp(3.0 \times 1.5)$ = 1.96 × 90 = 177 (180)		C1 A1	[2]
			(do not penalise unit error more than once)			
		(ii)	each ratio gives measure of transmission ratios (in (i)) very different so good contrast		B1 B1	[2]
12	(a)	(i)	serial-to-parallel converter		B1	[1]
		(ii)	digital-to-analogue converter or DAC		B1	[1]
		(iii)	(audio) amplifier or AF amplifier		B1	[1]
	(b)	(i)	4		A1	[1]
		(ii)	1011		A1	[1]
	(c)	cor 0, 8 and ser volt	rect levels at 0.25ms intervals 8, 11, 10, 15 1 7, 4 ies of steps, each of depth 0.25ms age levels shown in correct intervals		A1 A1 M1 A1	[4]

Page 7		7		Mark Scheme	Syllabus	Pape	er
	Cambridge		Cambridge	International AS/A Level – October/November 2015	9702	43	
13	(a)	ac	lvantage:	e.g. shorter time delay greater coverage over a long time		B1	
		di	sadvantage:	e.g. satellite needs to be tracked more satellites for (continuous) coverage/communi (any sensible suggestions)	cation	B1	[2]
	(b)	(i)	frequencie	s linking Earth with satellite		B1	
			6 GHz is u 4 GHz is d	plink frequency } ownlink frequency		B1	[2]
		(ii)	<i>either</i> sign <i>or</i> downlin	al from Earth to satellite is attenuated greatly k must be amplified greatly before transmission		B1	
			downlink w	vould swamp uplink unless frequencies are different		B1	[2]