

PHYSICS

9702/21 October/November 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Ρ	age 2	Mark Scheme	Syllabus	Рар	er
		Cambridge International AS/A Level – October/November 2016	9702	21	
1	(a) (de	nsity =) mass/volume		B1	[1]
	(b) (i)	$d = [(6 \times 7.5)/(\pi \times 8100)]^{1/3}$			
		= 0.12(1) m		A1	[1]
	(ii)	percentage uncertainty = $(4 + 5)/3$ (= 3%)			
		or fractional uncertainty = $(0.04 + 0.05)/3$ (= 0.03)		C1	
		absolute uncertainty (= 0.03×0.121) = 0.0036		C1	
		$d = 0.121 \pm 0.004 \mathrm{m}$		A1	[3]
2	(a) for	ce per unit positive charge		B1	[1]
	(b) (i)	time = $5.9 \times 10^{-2}/3.7 \times 10^{7}$ = 1.6×10^{-9} s (1.59×10^{-9} s)		A1	[1]
	(ii)	E = V/d		C1	
		= 2500 / 4.0 × 10 ⁻²			
		= 6.3×10^4 N C ⁻¹ (6.25×10^4 or 62500 N C ⁻¹)		A1	[2]
	(iii)	a = Eq/m or F = ma <u>and</u> F = Eq		C1	
		= $(6.3 \times 10^4 \times 1.60 \times 10^{-19})/9.11 \times 10^{-31}$ = $1.1 \times 10^{16} \text{m s}^{-2}$		A1	[2]
	(iv)	$s = ut + \frac{1}{2}at^2$			
		$= \frac{1}{2} \times 1.1 \times 10^{16} \times (1.6 \times 10^{-9})^2$		C1	
		= 1.4×10^{-2} (m)		C1	
		distance from plate = $2.0 - 1.4$ = 0.6 cm (allow 1 or more s.f.)		A1	[3]
	(v)	electric force \gg gravitational force (on electron)/weight			
		or acceleration due to electric field \gg acceleration due to gravitational	field	B1	[1]
	(vi)	$v_{\rm X}$ – <i>t</i> graph: horizontal line at a non-zero value of $v_{\rm X}$		B1	
		$v_{Y}-t$ graph: straight line through the origin with positive gradient		B1	[2]

	Cambridge International AS/A Level – October/November 2016 9702	21	
	rce/load is proportional to extension/compression (provided proportionality limit not exceeded)	B1	[1]
(b) (i	k = F/x or $k =$ gradient	C1	
	$k = 600 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
(ii	$(W =) \frac{1}{2}kx^2$ or $(W =) \frac{1}{2}Fx$ or $(W =)$ area under graph	C1	
	$(W =)0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J} \text{ or } (W =)0.5 \times 24 \times 0.040 = 0.48 \text{ J}$	A1	[2]
(iii	1. $(E_{\rm K} =) \frac{1}{2}mv^2$	C1	
	$= \frac{1}{2} \times 0.025 \times 6.0^2$		
	= 0.45 J	A1	[2]
	2. (work done against resistive force =) $0.48 - 0.45$ [= $0.03(0)$ J]	C1	
	average resistive force = 0.030/0.040	C1	
	= 0.75 N	A1	[3]
(iv	efficiency = [useful energy out/total energy in] (×100)	C1	
	= [0.45/0.48] (×100)		
	= 0.94 or 94%	A1	[2]
0	the source/of a point on the wave/of a particle (in the medium)	M1 A1	[2]
th	e number of wavelengths/wavefronts per unit time	(M1) (A1)	
(b) T	or period = 2.5 × 250 (μs) (= 625 μs)	M1	
fr	equency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz	A1	[2]
(c) (i	for maximum frequency: $f_0 = f_s v / (v - v_s)$		
	$1640 = (1600 \times 330) / (330 - v_s)$	C1	
	$v_{\rm s} = 8(.0){\rm ms^{-1}}(8.049{\rm ms^{-1}})$	A1	[2]
(ii	 loudspeaker moving towards observer causes rise in/high<u>er</u> frequency loudspeaker moving away from observer causes fall in/low<u>er</u> frequency or 	B1 B1	[2]
		(M1)	
	 is is (i) (ii) (iii) (iii) (iv) (i	is not exceeded) b) (i) $k = F/x$ or $k = \text{gradient}$ $k = 600 \text{ Nm}^{-1}$ (ii) $(W =) \frac{1}{2}kx^2$ or $(W =) \frac{1}{2}Fx$ or $(W =)$ area under graph $(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J}$ or $(W =) 0.5 \times 24 \times 0.040 = 0.48 \text{ J}$ (iii) 1. $(E_K =) \frac{1}{2}mv^2$ $= \frac{1}{4} \times 0.025 \times 6.0^2$ = 0.45 J 2. (work done against resistive force =) $0.48 - 0.45$ [= $0.03(0)$ J] average resistive force = $0.030/0.040$ = 0.75 N (iv) efficiency = [useful energy out/total energy in] (×100) $= [0.45/0.48] (\times100)$ = 0.94 or 94% a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) or the number of wavelengths/wavefronts per unit time passing a (fixed) point b) T or period = $2.5 \times 250 (\mu \text{s})$ (= $625 \ \mu \text{s}$) frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz c) (i) for maximum frequency: $f_0 = f_0 v/(v - v_0)$ $1640 = (1600 \times 330) / (330 - v_0)$ $v_0 = 8(.0) \text{ ms}^{-1}$ (8.049 m s^{-1}) (ii) loudspeaker moving towards observer causes rise in/higher frequency loudspeaker moving away from observer causes fall in/lower frequency	is not exceeded) B1 b) (i) $k = F/x$ or $k = \text{gradient}$ C1 $k = 600 \text{ Nm}^{-1}$ A1 (ii) $(W =) \frac{3}{kx^2}$ or $(W =) \frac{3}{kx}$ or $(W =)$ area under graph C1 $(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J}$ or $(W =) 0.5 \times 24 \times 0.040 = 0.48 \text{ J}$ A1 (iii) 1. $(E_K =) \frac{3}{km^2}$ C1 $= \frac{1}{2} \times 0.025 \times 6.0^2$ C1 $= \frac{1}{2} \times 0.025 \times 6.0^2$ A1 2. (work done against resistive force =) 0.48 - 0.45 [= 0.03(0) J] C1 average resistive force = 0.030 / 0.040 C1 $= 0.75 \text{ N}$ A1 (iv) efficiency = [useful energy out/total energy in] (×100) C1 $= 0.45 / 0.48] (\times 100)$ E $= 0.94$ or 94% A1 a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium) or the number of wavelengths/wavefronts per unit time passing a (fixed) point M1 b) T or period = $2.5 \times 250 (\mu \text{ s}) (= 625 \ \mu \text{ s})$ M1 frequency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6}) = 1600 \text{ Hz}$ A1 c) (i) for maximum frequency: $f_0 = f_0 V/ (\nu - v_0)$ 1640 = (1600 \times 330) / (330 - \nu_0) C1 $v_s = 8(.0) \text{ ms}^{-1} (8.049 \text{ ms}^{-1})$ A1 A1

Page 4				Paper	
		Cambridge International AS/A Level – October/November 2016	9702	21	
5	(a)	wave incident on/passes by or through an aperture/edge wave spreads (into geometrical shadow)		B1 B1	[2]
	(b)	$n\lambda = d\sin\theta$		C1	
		substitution of $\theta = 90^{\circ} \text{ or } \sin \theta = 1$		C1	
		$4 \times 500 \times 10^{-9} = d \times \sin 90^{\circ}$			
		line spacing = 2.0×10^{-6} m		A1	[3]
	(c)	wavelength of red light is longer (than 500 nm)		M1	
		(each order/fourth order is now at a greater angle so) the fifth-order max cannot be formed/not formed	imum	A1	[2]
6	(a)	work done or energy (transformed) (from electrical to other forms) charge		B1	[1]
	(b)	(i) 1 . $V = IR$ or $E = IR$		C1	
		I = 14/6.0 = 2.3 (2.33)A		A1	[2]
		2. total resistance of parallel resistors = 8.0Ω		C1	
		current = $14/(6.0 + 8.0)$ = 1.0 A		A1	[2]
		(ii) $P = EI$ (allow $P = VI$) or $P = V^2/R$ or $P = I^2R$		C1	
		change in power = $(14 \times 2.33) - (14 \times 1.0)$ or $(14^2 / 6.0) - (14^2 / 14)$ or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$			
		= 19W (18W if 2.3A used)		A1	[2]
	(c)	I = Anvq			
		ratio = $(0.50n/n) \times (1.8A/A)$ or ratio = 0.50×1.8		C1	
		= 0.90		A1	[2]

Page 5		5	Mark Scheme		Paper	
		(Cambridge International AS/A Level – October/November 2016	9702	21	
7	(a)	hao or	dron not a fundamental particle/lepton is fundamental particle			
			dron made of quarks/lepton not made of quarks			
		or stro	ong force/interaction acts on hadrons/does not act on leptons		B1	[1]
	(b)	(i)	proton: up, up, down/uud neutron: up, down, down/udd		B1 B1	[2]
		(ii)	composition: $2(uud) + 2(udd)$ = 6 up, 6 down/6u, 6d		B1	[1]
	(c)	(i)	<u>most of</u> the atom is empty space or			
			the nucleus (volume) is (very) small compared to the atom		B1	[1]
		(ii)	nucleus is (positively) charged		B1	
			the mass is concentrated in (very small) nucleus/small region/small volume/small core or			
			the majority of mass in (very small) nucleus/small region/small volu core	me/small	B1	[2]