

PHYSICS

9702/23 October/November 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Ρ	age 2	2	Mark Scheme		Paper	
			Cambridge International AS/A Level – October/November 2016	9702	23	
1	(a)	(de	ensity =) mass/volume		B1	[1]
	(b)	(i)	$d = [(6 \times 7.5)/(\pi \times 8100)]^{1/3}$			
			= 0.12(1) m		A1	[1]
		(ii)	percentage uncertainty = $(4 + 5)/3$ (= 3%)			
			fractional uncertainty = $(0.04 + 0.05)/3$ (= 0.03)		C1	
			absolute uncertainty (= 0.03×0.121) = 0.0036		C1	
			$d = 0.121 \pm 0.004 \mathrm{m}$		A1	[3]
2	(a)	for	ce per unit positive charge		B1	[1]
	(b)	(i)	time = $5.9 \times 10^{-2}/3.7 \times 10^{7}$ = 1.6×10^{-9} s (1.59×10^{-9} s)		A1	[1]
		(ii)	E = V/d		C1	
			= 2500 / 4.0 × 10 ⁻²			
			= $6.3 \times 10^4 \text{N}\text{C}^{-1}$ ($6.25 \times 10^4 \text{ or } 62500 \text{N}\text{C}^{-1}$)		A1	[2]
		(iii)	a = Eq/m or F = ma <u>and</u> F = Eq		C1	
			= $(6.3 \times 10^4 \times 1.60 \times 10^{-19})/9.11 \times 10^{-31}$ = $1.1 \times 10^{16} \text{m s}^{-2}$		A1	[2]
		(iv)	$s = ut + \frac{1}{2}at^2$			
			$= \frac{1}{2} \times 1.1 \times 10^{16} \times (1.6 \times 10^{-9})^2$		C1	
			$= 1.4 \times 10^{-2}$ (m)		C1	
			distance from plate = $2.0 - 1.4$ = 0.6 cm (allow 1 or more s.f.)		A1	[3]
		(v)	electric force \gg gravitational force (on electron)/weight or			
			acceleration due to electric field \gg acceleration due to gravitational	field	B1	[1]
		(vi)	$v_X - t$ graph: horizontal line at a non-zero value of v_X		B1	
			$v_{\rm Y}$ – <i>t</i> graph: straight line through the origin with positive gradient		B1	[2]

P	age (3	Mark Scheme	Syllabus	Pape	ər
			Cambridge International AS/A Level – October/November 2016	9702	23	
3	(a)	for is i	ce/load is proportional to extension/compression (provided proportion not exceeded)	ality limit	B1	[1]
	(b)	(i)	k = F/x or $k = $ gradient		C1	
			$k = 600 \mathrm{N}\mathrm{m}^{-1}$		A1	[2]
		(ii)	$(W =) \frac{1}{2}kx^2$ or $(W =) \frac{1}{2}Fx$ or $(W =)$ area under graph		C1	
			$(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{ J} \text{ or } (W =) 0.5 \times 24 \times 0.040 = 0.48 \text{ J}$	48 J	A1	[2]
		(iii)	1. $(E_{\rm K} =) \frac{1}{2}mv^2$		C1	
			$= \frac{1}{2} \times 0.025 \times 6.0^2$			
			= 0.45 J		A1	[2]
			2. (work done against resistive force =) $0.48 - 0.45 = 0.03(0)$ J		C1	
			average resistive force = 0.030/0.040		C1	
			= 0.75 N		A1	[3]
		(iv)	efficiency = [useful energy out/total energy in] (×100)		C1	
			= [0.45/0.48] (×100)			
			= 0.94 or 94%		A1	[2]
4	(a)	the of	e number of oscillations per unit time the source/of a point on the wave/of a particle (in the medium)		M1 A1	[2]
		the pa	e number of wavelengths/wavefronts per unit time ssing a (fixed) point		(M1) (A1)	
	(b)	Τc	or period = 2.5 × 250 (μs) (= 625 μs)		M1	
		fre	quency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600 Hz		A1	[2]
	(c)	(i)	for maximum frequency: $f_0 = f_s v / (v - v_s)$			
			$1640 = (1600 \times 330) / (330 - v_s)$		C1	
			$v_{\rm s} = 8(.0){\rm ms^{-1}}(8.049{\rm ms^{-1}})$		A1	[2]
		(ii)	loudspeaker moving towards observer causes rise in/high <u>er</u> frequen loudspeaker moving away from observer causes fall in/low <u>er</u> freque or	icy ncy	B1 B1	[2]
			repeated rise and fall/higher and then lower frequency caused by loudspeaker moving towards and away from observer		(M1) (A1)	

Ρ	age 4	1	Mark Scheme	Syllabus	Рар	ər
		C	Cambridge International AS/A Level – October/November 2016	9702	23	
5	(a)	wav wav	ve incident on/passes by or through an aperture/edge ve spreads (into geometrical shadow)		B1 B1	[2]
	(b)	nλ=	= $d \sin \theta$		C1	
		sub	stitution of $\theta = 90^{\circ} \text{ or } \sin \theta = 1$		C1	
		4 ×	$500 \times 10^{-9} = d \times \sin 90^{\circ}$			
		line	spacing = 2.0×10^{-6} m		A1	[3]
	(c)	wav	elength of red light is long <u>er</u> (than 500 nm)		M1	
		(eao can	ch order/fourth order is now at a greater angle so) the fifth-order ma not be formed/not formed	ximum	A1	[2]
6	(a)	wo	rk done or energy (transformed) (from electrical to other forms) charge		B1	[1]
	(b)	(i)	1. $V = IR$ or $E = IR$		C1	
			I = 14/6.0 = 2.3 (2.33) A		A1	[2]
			2. total resistance of parallel resistors = 8.0Ω		C1	
			current = $14/(6.0 + 8.0)$ = 1.0 A		A1	[2]
		(ii)	$P = EI$ (allow $P = VI$) or $P = V^2/R$ or $P = I^2R$		C1	
			change in power = $(14 \times 2.33) - (14 \times 1.0)$ or $(14^2 / 6.0) - (14^2 / 14)$ or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$			
			= 19W (18W if 2.3A used)		A1	[2]
	(c)	I = .	Anvq			
		ratio	$p = (0.50n/n) \times (1.8A/A)$ or ratio = 0.50×1.8		C1	
			= 0.90		A1	[2]

Page 5		5	Mark Scheme		Paper	
			Cambridge International AS/A Level – October/November 2016	9702	23	
7	(a)	ha or ha or sti	ndron not a fundamental particle/lepton is fundamental particle adron made of quarks/lepton not made of quarks rong force/interaction acts on hadrons/does not act on leptons		B1	[1]
	(b)	(i)	proton: up, up, down/uud neutron: up, down, down/udd		B1 B1	[2]
		(ii)	composition: $2(uud) + 2(udd)$ = 6 up, 6 down/6u, 6d		B1	[1]
	(c)	(i)	<u>most of</u> the atom is empty space or the nucleus (volume) is (very) small compared to the atom		B1	[1]
		(ii)	nucleus is (positively) charged		B1	
			the mass is concentrated in (very small) nucleus/small region/small volume/small core <i>or</i> the majority of mass in (very small) nucleus/small region/small volum core	ie/small	B1	[2]