Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

Paper 2 AS Level Structured Questions
MARK SCHEME
Maximum Mark: 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	23

1 (a) (density =) mass/volume
(b) (i) $d=[(6 \times 7.5) /(\pi \times 8100)]^{1 / 3}$

$$
=0.12(1) \mathrm{m}
$$

(ii) percentage uncertainty $=(4+5) / 3$ (= 3\%)
or
fractional uncertainty $=(0.04+0.05) / 3 \quad(=0.03)$
absolute uncertainty $(=0.03 \times 0.121)=0.0036$ C1

$$
d=0.121 \pm 0.004 \mathrm{~m}
$$

2 (a) force per unit positive charge
(b) (i) time $=5.9 \times 10^{-2} / 3.7 \times 10^{7}$

$$
\begin{equation*}
=1.6 \times 10^{-9} \mathrm{~s}\left(1.59 \times 10^{-9} \mathrm{~s}\right) \tag{A1}
\end{equation*}
$$

(ii) $E=V / d$

$$
\begin{aligned}
& =2500 / 4.0 \times 10^{-2} \\
& =6.3 \times 10^{4} \mathrm{NC}^{-1}\left(6.25 \times 10^{4} \text { or } 62500 \mathrm{NC}^{-1}\right)
\end{aligned}
$$

(iii) $a=E q / m$ or $F=m a$ and $F=E q$

$$
=\left(6.3 \times 10^{4} \times 1.60 \times 10^{-19}\right) / 9.11 \times 10^{-31}=1.1 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-2}
$$

(iv) $s=u t+1 / 2 a t^{2}$

$$
\begin{equation*}
=1 / 2 \times 1.1 \times 10^{16} \times\left(1.6 \times 10^{-9}\right)^{2} \tag{C1}
\end{equation*}
$$

$$
=1.4 \times 10^{-2}(\mathrm{~m})
$$C1

distance from plate $=2.0-1.4$

$$
=0.6 \mathrm{~cm} \text { (allow } 1 \text { or more s.f.) }
$$

(v) electric force > gravitational force (on electron)/weight
or
acceleration due to electric field >> acceleration due to gravitational field
(vi) $v_{\mathrm{x}}-t$ graph: horizontal line at a non-zero value of v_{x}
$v_{Y}-t$ graph: straight line through the origin with positive gradient
B1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	23

3 (a) force/load is proportional to extension/compression (provided proportionality limit is not exceeded)

B1
(b) (i) $k=F / x$ or $k=$ gradient
$k=600 \mathrm{Nm}^{-1}$
(ii) $(W=)^{1 / 2 k x^{2}}$ or $(W=) \frac{1}{2} F x$ or $(W=)$ area under graph
$(W=) 0.5 \times 600 \times(0.040)^{2}=0.48 \mathrm{~J}$ or $(W=) 0.5 \times 24 \times 0.040=0.48 \mathrm{~J}$
A1
(iii) 1. $\left(E_{\mathrm{K}}=\right) 1 / 2 m v^{2}$

$$
\begin{aligned}
& =1 / 2 \times 0.025 \times 6.0^{2} \\
& =0.45 \mathrm{~J}
\end{aligned}
$$

2. (work done against resistive force $=$) $0.48-0.45[=0.03(0) \mathrm{J}]$
average resistive force $=0.030 / 0.040$

$$
=0.75 \mathrm{~N}
$$

$$
\text { (iv) efficiency } \begin{aligned}
& =[\text { useful energy out/total energy in }](\times 100) \\
& =[0.45 / 0.48](\times 100) \\
& =0.94 \text { or } 94 \%
\end{aligned}
$$

4 (a) the number of oscillations per unit time
or
the number of wavelengths/wavefronts per unit time
(b) T or period $=2.5 \times 250(\mu \mathrm{~s})(=625 \mu \mathrm{~s})$
frequency $=1 /\left(6.25 \times 10^{-4}\right)$ or $1 /\left(2.5 \times 250 \times 10^{-6}\right)=1600 \mathrm{~Hz}$
(c) (i) for maximum frequency: $f_{o}=f_{\mathrm{s}} v /\left(v-v_{\mathrm{s}}\right)$

$$
1640=(1600 \times 330) /\left(330-v_{\mathrm{s}}\right)
$$

$v_{\mathrm{s}}=8(.0) \mathrm{m} \mathrm{s}^{-1}\left(8.049 \mathrm{~m} \mathrm{~s}^{-1}\right)$
(ii) loudspeaker moving towards observer causes rise in/higher frequency

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	23

5 (a) wave incident on/passes by or through an aperture/edge
B1 wave spreads (into geometrical shadow)

B1
(b) $n \lambda=d \sin \theta$

C1
substitution of $\theta=90^{\circ}$ or $\sin \theta=1$
$4 \times 500 \times 10^{-9}=d \times \sin 90^{\circ}$
line spacing $=2.0 \times 10^{-6} \mathrm{~m}$
(c) wavelength of red light is longer (than 500 nm)
(each order/fourth order is now at a greater angle so) the fifth-order maximum cannot be formed/not formed

6 (a) work done or energy (transformed) (from electrical to other forms)
(b) (i) 1. $V=I R$ or $E=I R$

$$
\begin{aligned}
I & =14 / 6.0 \\
& =2.3(2.33) \mathrm{A}
\end{aligned}
$$

2. total resistance of parallel resistors $=8.0 \Omega$

$$
\begin{aligned}
\text { current } & =14 /(6.0+8.0) \\
& =1.0 \mathrm{~A}
\end{aligned}
$$

(ii) $P=E I$ (allow $P=V I$) or $P=V^{2} / R$ or $P=I^{2} R$
change in power $=(14 \times 2.33)-(14 \times 1.0)$
or $\left(14^{2} / 6.0\right)-\left(14^{2} / 14\right)$
or $\left(2.33^{2} \times 6.0\right)-\left(1.0^{2} \times 14\right)$
$=19 \mathrm{~W}(18 \mathrm{~W}$ if 2.3 A used $)$
(c) $I=A n v q$

$$
\begin{aligned}
\text { ratio } & =(0.50 n / n) \times(1.8 A / A) \quad \text { or ratio }=0.50 \times 1.8 \\
& =0.90
\end{aligned}
$$

A1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	23

7 (a) hadron not a fundamental particle/lepton is fundamental particle or
hadron made of quarks/lepton not made of quarks
or
strong force/interaction acts on hadrons/does not act on leptons
B1
(b) (i) proton: up, up, down/uud

B1
neutron: up, down, down/udd
B1
(ii) composition: 2(uud) +2 (udd)
$=6$ up, 6 down/6u, 6d
B1
(c) (i) $\frac{\text { most }}{\text { or }}$ the atom is empty space
the nucleus (volume) is (very) small compared to the atom
B1
(ii) nucleus is (positively) charged
the mass is concentrated in (very small) nucleus/small region/small volume/small core
or
the majority of mass in (very small) nucleus/small region/small volume/small core

