

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/42

Paper 4 A Level Structured Questions

October/November 2016

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	(Cam	bridge	International AS/A Level – October/November 2016 970	2	42	
(a)	ford	ce pe	er unit n	mass		B1	[1]
(b)	(i)			meter/size (of Proxima Centauri) \ll /is $\underline{\text{much}}$ less than km/separation (of Sun and star)			
			cause)	it is a <u>uniform</u> sphere		B1	[1]
	(ii)	1.	field s	strength = GM/x^2			
				= $(6.67 \times 10^{-11} \times 2.5 \times 10^{29})/(4.0 \times 10^{13} \times 10^{3})^{2}$		C1	
				$= 1.0 \times 10^{-14} \mathrm{Nkg^{-1}}$		A1	[2]
		2.	force	= field strength × mass			
				$= 1.0 \times 10^{-14} \times 2.0 \times 10^{30}$		C1	
			or				
			force	$= GMm/x^2$			
				= $(6.67 \times 10^{-11} \times 2.5 \times 10^{29} \times 2.0 \times 10^{30})/(4.0 \times 10^{13} \times 10^{3})^{2}$		(C1)	
				$= 2.0 \times 10^{16} \mathrm{N}$		A1	[2]
(c)	ford	ce (o	of 2 × 10	0 ¹⁶ N) would have little effect on (large) <u>mass</u> of Sun		B1	
			ause ai ation	n acceleration of Sun of $1.0 \times 10^{-14} \text{ m s}^{-2}$ /very small/negligible		B1	[2]
	or						
		-		around the Sun rces/fields is zero		(B1) (B1)	
(a)	(i)	nur	mber of	moles/amount of substance		B1	[1]
	(ii)	kel	vin tem _l	perature/absolute temperature/thermodynamic temperature		B1	[1]
(b)	pV	= nF	₹ <i>T</i>				
	4.9	× 10	$0^5 \times 2.4$	$4 \times 10^3 \times 10^{-6} = n \times 8.31 \times 373$		B1	
	n =	0.38	8 (mol)			C1	
	nur	nber	of mole	ecules or $N = 0.38 \times 6.02 \times 10^{23} = 2.3 \times 10^{23}$		A1	[3]

Mark Scheme

Page 2

1

2

Syllabus

Paper

Page 3			Mark Scheme	Syllabus	Pape	
			Cambridge International AS/A Level – October/November 2016	9702	42	
		or				
		pV	T = NkT		(C1)	
		4.9	$0 \times 10^5 \times 2.4 \times 10^3 \times 10^{-6} = N \times 1.38 \times 10^{-23} \times 373$		(M1)	
		nu	mber of molecules or $N = 2.3 \times 10^{23}$		(A1)	
	(c)	vol	ume occupied by one molecule = $(2.4 \times 10^3) / (2.3 \times 10^{23})$		C1	
			= $1.04 \times 10^{-20} \text{cm}^3$			
		me	ean spacing = $(1.04 \times 10^{-20})^{1/3}$		C1	
			= 2.2×10^{-7} cm (allow 1 s.f.)		A1	[3]
		(al	low other dimensionally correct methods e.g. $V = (4/3)\pi r^3$)			
3	(a)		im of/total) potential energy and kinetic energy of (all) molecules/part erence to random (distribution)	icles	M1 A1	[2]
	(b)	(i)	no heat enters (gas)/leaves (gas)/no heating (of gas)		B1	
			work done by gas (against atmosphere as it expands)		M1	
			internal energy decreases		A1	[3]
		(ii)	volume decreases so work done on ice/water (allow work done negligible because ΔV small)		B1	
			heating of ice (to break rigid forces/bonds)		M1	
			internal energy increases		A1	[3]
4	(a)	(i)	0.225s <u>and</u> 0.525s		A1	[1]
		(ii)	period or $T = 0.30 \text{s}$ and $\omega = 2\pi/T$		C1	
			$\omega = 2\pi/0.30$			
			$\omega = 21 \mathrm{rad}\mathrm{s}^{-1}$		A1	[2]
		(iii)	speed = ωx_0 or $\omega (x_0^2 - x^2)^{1/2}$ and $x = 0$		C1	
			$= 20.9 \times 2.0 \times 10^{-2} = 0.42 \mathrm{m s^{-1}}$		A1	[2]

P	Page 4				Pap	
			Cambridge International AS/A Level – October/November 2016	9702	42	ı
		cor	e of tangent method: rect tangent shown on Fig. 4.2 rking e.g. ∆y/∆x leading to maximum speed in range (0.38–0.46) ms	. - 1	(C1) (A1)	
	(b)	ske	etch: reasonably shaped continuous oval/circle surrounding (0,0) ve passes through (0, 0.42) and (0, –0.42) ve passes through (2.0, 0) and (–2.0, 0)		B1 B1 B1	[3]
5	(a)	or	nsducer/transmitter can be also be used as the receiver			
		trar	nsducer both transmits and receives			
		rec	eives reflected pulses between the emitted pulses			
		(ne	eds to be pulsed) in order to measure/determine depth(s)			
		(ne	eds to be pulsed) to determine nature of boundaries			
		An	y three of the above marking points, 1 mark each		B2	[2]
	(b)	(i)	product of speed of (ultra)sound and density (of medium)		M1	
			reference to speed of sound <u>in medium</u>		A1	[2]
		(ii)	if Z_1 and Z_2 are (nearly) equal, $I_{\rm T}/I_0$ (nearly) equal to 1/unity/(very) reflection/mostly transmission	little	B1	
			if $Z_1\gg Z_2$ or $Z_1\ll Z_2$ or the difference between Z_1 and Z_2 is (very) latter I_T/I_0 is small/zero/mostly reflection/little transmission	arge,	В1	[2]
6	(a)	E=	$= 0 \text{ or } E_A = (-)E_B \text{ (at } x = 11 \text{ cm)}$		B1	
		Q_A	$V_x^2 = Q_B/(20-x)^2 = 11^2/9^2$		C1	
		Q_A	$/Q_{\rm B}$ or ratio = 1.5		A1	[3]
		or				
		Ε∝	Q because r same or $E = Q/4\pi\epsilon_0 r^2$ and r same		(B1)	
		Q_A	$Q_{\rm B} = 48/32$		(C1)	
		Q_A	$/Q_{\rm B}$ or ratio = 1.5		(A1)	

Ė	aye .		Cambridge International AS/A Level – October/November 2016 9702	42	
	(b)	(i)	for max. speed, $\Delta V = (0.76 - 0.18) \text{ V}$ or $\Delta V = 0.58 \text{ V}$	C1	
			$q\Delta V = \frac{1}{2}mv^2$		
			$2 \times (1.60 \times 10^{-19}) \times 0.58 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$	C1	
			$v^2 = 5.59 \times 10^7$		
			$v = 7.5 \times 10^3 \mathrm{m s^{-1}}$	A1	[3]
		(ii)	$\Delta V = 0.22 \text{ V}$	C1	
			$2 \times (1.60 \times 10^{-19}) \times 0.22 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$		
			$v^2 = 2.12 \times 10^7$		
			$v = 4.6 \times 10^3 \mathrm{ms^{-1}}$	A1	[2]
7	(a)	(i)	charge/potential (difference) or charge per (unit) potential (difference)	B1	[1]
			$(V = Q/4\pi\epsilon_0 r \text{ and } C = Q/V)$		
		()	for sphere, $C = Q/V = 4\pi\epsilon_0 r$	C1	
			$C = 4\pi \times 8.85 \times 10^{-12} \times 12.5 \times 10^{-2} = 1.4 \times 10^{-11} \mathrm{F}$	A1	[2]
	(b)	(i)	$1/C_{\rm T} = 1/3.0 + 1/6.0$		
			$C_{T} = 2.0 \mu\text{F}$	A1	[1]
		(ii)	total charge = charge on 3.0 μF capacitor = 2.0 (μ) \times 9.0 = 18 (μC)	C1	
			potential difference = Q/C = 18 (μ)C/3.0 (μ)F = 6.0 V	A1	[2]
			or		
			argument based on equal charges:		
			$3.0 \times V = 6.0 \times (9.0 - V)$	(C1)	
			V = 6.0 V	(A1)	
		(iii)	potential difference (= 9.0 – 6.0) = 3.0 V	C1	
			charge (= $3.0 \times 2.0 \ (\mu)$) = $6.0 \mu C$	A1	[2]

Mark Scheme

Syllabus

Paper

Page 5

<u> </u>	age c	Cambridge International AS/A Level – October/November 2016 9702	42	-
8	(a)	P shown between earth symbol and voltmeter	B1	[1]
	(b)	(i) gain = $(50 \times 10^3)/100 = 500$	C1	
		$V_{\text{IN}} (= 5.0/500) = 0.010 \text{ V}$	A1	[2]
		(ii) $V_{IN} = 5.0/5.0 = 1.0 \text{ V}$	A1	[1]
	(c)	e.g. multi-range (volt)meter c.r.o. sensitivity control		
		amplifier channel selector	B1	[1]
9	(a)	(by Newton's third law) force on wire is up(wards) by (Fleming's) left-hand rule/right-hand slap rule to give current	M1 A1	
		in direction left to right shown on diagram	A1	[3]
	(b)	force ∞ current or $F = BIL$ or $B = 0.080/6.0L = 1/75L$	C1	
		maximum current = $2.5 \times \sqrt{2}$ = 3.54 A	C1	
		maximum force in one direction = $(3.54/6.0) \times 0.080$ = 0.047N	C1	
		difference (= 2×0.047) = $0.094 \mathrm{N}$		
		or force varies from 0.047 N upwards to 0.047 N downwards	A1	[4]
10	nuc	lei emitting r.f. (pulse)	B1	
	Larr field	mor frequency/r.f. frequency emitted/detected depends on magnitude of magnetic	B1	
	nuc	lei can be located (within a slice)	B1	
	cha	nging field enables position of detection (slice) to be changed	B1	[4]
11	(a)	(induced) e.m.f. proportional/equal to <u>rate</u> of change of (magnetic) flux (linkage)	M1 A1	[2]
	(b)	(for same current) iron core gives large(r) (rates of change of) flux (linkage) e.m.f induced in solenoid is greater (for same current) induced e.m.f. opposes applied e.m.f. so current smaller/acts to reduce current	B1 M1 A1	[3]

Mark Scheme

Syllabus

Paper

Page 6

Pa	age 7		Mark Scheme	Syllabus	Pape	er
			Cambridge International AS/A Level – October/November 2016	9702	42	
		(rat	ne supply so same induced e.m.f. balancing it e of change of) flux linkage is same aller current for same flux when core present		(B1) (M1) (A1)	
	(c)		. (heating due to) <u>eddy currents in core</u> ating due to current in) <u>resistance of coils</u>			
		hys	teresis losses/losses due to changing magnetic field in core			
		Any	two of the above marking points, 1 mark each		B2	[2]
12	(a)	(i)	electron diffraction/electron microscope (allow other sensible sugge	estions)	B1	[1]
		(ii)	photoelectric effect/Compton scattering (allow other sensible sugge	estions)	B1	[1]
	(b)	(i)	arrow clear from -0.54 eV to -3.40 eV		B1	[1]
		(ii)	$E = hc/\lambda$ or $E = hf$ and $c = f\lambda$		C1	
			$\lambda = (6.63 \times 10^{-34} \times 3.00 \times 10^{8})/[(3.40 - 0.54) \times 1.60 \times 10^{-19}] = 4.35$	× 10 ⁻⁷ m	A1	[2]
	(c)	(i)	wavelength associated with a particle that is moving/has momentum/has speed/has velocity		M1 A1	[2]
		(ii)	$\lambda = h/mv$			
			$v = (6.63 \times 10^{-34}) / (9.11 \times 10^{-31} \times 4.35 \times 10^{-7})$		C1	
			$= 1.67 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
13		-	nage of a (single) slice/cross-section (through the patient) om different angles/rotating X-ray (beam)		M1 A1	
		•	er is used to form/process/build up/store <u>image</u> ge (of the slice)		B1 B1	
	•		d for many/different (neighbouring) slices up 3D image		M1 A1	[6]

Page 8	Mark Scheme	Syllabus	Paper	
	Cambridge International AS/A Level – October/November 2016		42	
14 (a)	(i) ${}^4_2\text{He}$ or ${}^4_2\alpha$		B1	[1]
	(ii) ¹ ₀ n		B1	[1]
(b)	(i) $\Delta m = (29.97830 + 1.00867) - (26.98153 + 4.00260)$		C1	
	= 30.98697 – 30.98413			
	$= 2.84 \times 10^{-3} \text{ u}$		C1	[2]
	(ii) $E = c^2 \Delta m$ or mc^2		C1	
	= $(3.0 \times 10^8)^2 \times 2.84 \times 10^{-3} \times 1.66 \times 10^{-27}$			
	$= 4.2 \times 10^{-13} \text{ J}$		A1	[2]
(c)	mass of products is greater than mass of A l plus α			
	or reaction causes (net) <u>increase</u> in (rest) mass (of the system)		B1	
	lpha-particle must have at <u>least</u> this amount of <u>kinetic energy</u>		B1	[2]