Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/42
Paper 4 A Level Structured Questions
October/November 2016
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

1 (a) force per unit mass
(b) (i) radius/diameter/size (of Proxima Centauri) < /is much less than $4.0 \times 10^{13} \mathrm{~km} /$ separation (of Sun and star)
or
(because) it is a uniform sphere
(ii) 1. field strength $=G M / x^{2}$

$$
\begin{array}{ll}
=\left(6.67 \times 10^{-11} \times 2.5 \times 10^{29}\right) /\left(4.0 \times 10^{13} \times 10^{3}\right)^{2} & \text { C1 } \tag{C1}\\
=1.0 \times 10^{-14} \mathrm{Nkg}^{-1} & \text { A1 }
\end{array}
$$

2. force $=$ field strength \times mass

$$
\begin{equation*}
=1.0 \times 10^{-14} \times 2.0 \times 10^{30} \tag{C1}
\end{equation*}
$$

or

$$
\begin{align*}
\text { force } & =G M m / x^{2} \\
& =\left(6.67 \times 10^{-11} \times 2.5 \times 10^{29} \times 2.0 \times 10^{30}\right) /\left(4.0 \times 10^{13} \times 10^{3}\right)^{2} \tag{C1}\\
& =2.0 \times 10^{16} \mathrm{~N}
\end{align*}
$$

(c) force (of $2 \times 10^{16} \mathrm{~N}$) would have little effect on (large) mass of Sun
would cause an acceleration of Sun of $1.0 \times 10^{-14} \mathrm{~m} \mathrm{~s}^{-2} /$ very small/negligible acceleration
or
many stars all around the Sun
net effect of forces/fields is zero

2 (a) (i) number of moles/amount of substance
(ii) kelvin temperature/absolute temperature/thermodynamic temperature
(b) $p V=n R T$
$4.9 \times 10^{5} \times 2.4 \times 10^{3} \times 10^{-6}=n \times 8.31 \times 373 \quad$ B1
$n=0.38(\mathrm{~mol})$
C1
number of molecules or $N=0.38 \times 6.02 \times 10^{23}=2.3 \times 10^{23}$ A1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

or
$p V=N k T$
$4.9 \times 10^{5} \times 2.4 \times 10^{3} \times 10^{-6}=N \times 1.38 \times 10^{-23} \times 373$
number of molecules or $N=2.3 \times 10^{23}$
(c) volume occupied by one molecule $=\left(2.4 \times 10^{3}\right) /\left(2.3 \times 10^{23}\right)$

$$
=1.04 \times 10^{-20} \mathrm{~cm}^{3}
$$

mean spacing $=\left(1.04 \times 10^{-20}\right)^{1 / 3}$

$$
\begin{equation*}
=2.2 \times 10^{-7} \mathrm{~cm} \text { (allow } 1 \text { s.f.) } \tag{C1}
\end{equation*}
$$

(allow other dimensionally correct methods e.g. $V=(4 / 3) \pi r^{3}$)

3 (a) (sum of/total) potential energy and kinetic energy of (all) molecules/particlesreference to random (distribution)
(b) (i) no heat enters (gas)/leaves (gas)/no heating (of gas)
work done by gas (against atmosphere as it expands) M1
internal energy decreases A1
(ii) volume decreases so work done on ice/water
(allow work done negligible because ΔV small)
heating of ice (to break rigid forces/bonds)
M1
internal energy increases
A1

4 (a) (i) 0.225 s and 0.525 s
(ii) period or $T=0.30 \mathrm{~s}$ and $\omega=2 \pi / T$
$\omega=2 \pi / 0.30$
$\omega=21 \mathrm{rads}^{-1}$
A1
(iii) speed $=\omega x_{0}$ or $\omega\left(x_{0}{ }^{2}-x^{2}\right)^{1 / 2}$ and $x=0$

C1

$$
=20.9 \times 2.0 \times 10^{-2}=0.42 \mathrm{~m} \mathrm{~s}^{-1}
$$

A1
[2]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

or
use of tangent method:
correct tangent shown on Fig. 4.2
working e.g. $\Delta y / \Delta x$ leading to maximum speed in range $(0.38-0.46) \mathrm{ms}^{-1}$
$\begin{array}{ll}\text { (b) sketch: reasonably shaped continuous oval/circle surrounding }(0,0) & \text { B1 } \\ \text { curve passes through }(0,0.42) \text { and }(0,-0.42) & \text { B1 }\end{array}$
curve passes through (2.0, 0) and ($-2.0,0$)

5 (a) transducer/transmitter can be also be used as the receiver or
transducer both transmits and receives
receives reflected pulses between the emitted pulses
(needs to be pulsed) in order to measure/determine depth(s)
(needs to be pulsed) to determine nature of boundaries
Any three of the above marking points, 1 mark each
(b) (i) product of speed of (ultra)sound and density (of medium) M1
reference to speed of sound in medium
(ii) if Z_{1} and Z_{2} are (nearly) equal, I_{T} / I_{0} (nearly) equal to $1 /$ unity/(very) little reflection/mostly transmission
if $Z_{1} \gg Z_{2}$ or $Z_{1} \ll Z_{2}$ or the difference between Z_{1} and Z_{2} is (very) large, then I_{T} / I_{0} is small/zero/mostly reflection/little transmission

6 (a) $E=0$ or $E_{A}=(-) E_{B}$ (at $\left.x=11 \mathrm{~cm}\right)$
$Q_{A} / x^{2}=Q_{B} /(20-x)^{2}=11^{2} / 9^{2}$
Q_{A} / Q_{B} or ratio $=1.5$
or
$E \propto Q$ because r same or $E=Q / 4 \pi \varepsilon_{0} r^{2}$ and r same
$Q_{A} / Q_{B}=48 / 32$
Q_{A} / Q_{B} or ratio $=1.5$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

(b) (i) for max. speed, $\Delta V=(0.76-0.18) \vee$ or $\Delta V=0.58 \mathrm{~V}$
$q \Delta V=1 / 2 m v^{2}$
$2 \times\left(1.60 \times 10^{-19}\right) \times 0.58=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$
$v^{2}=5.59 \times 10^{7}$
$v=7.5 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$ A1
(ii) $\Delta V=0.22 \mathrm{~V}$
$2 \times\left(1.60 \times 10^{-19}\right) \times 0.22=1 / 2 \times 4 \times 1.66 \times 10^{-27} \times v^{2}$
$v^{2}=2.12 \times 10^{7}$
$v=4.6 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$

7 (a) (i) charge/potential (difference) or charge per (unit) potential (difference)
(ii) $\left(V=Q / 4 \pi \varepsilon_{0} r\right.$ and $\left.C=Q / V\right)$
for sphere, $C(=Q / V)=4 \pi \varepsilon_{0} r$
$C=4 \pi \times 8.85 \times 10^{-12} \times 12.5 \times 10^{-2}=1.4 \times 10^{-11} \mathrm{~F}$
A1
(b) (i) $1 / C_{T}=1 / 3.0+1 / 6.0$
$C_{T}=2.0 \mu \mathrm{~F}$
A1
(ii) total charge $=$ charge on $3.0 \mu \mathrm{~F}$ capacitor $=2.0(\mu) \times 9.0=18(\mu \mathrm{C})$
potential difference $=Q / C=18(\mu) \mathrm{C} / 3.0(\mu) \mathrm{F}=6.0 \mathrm{~V}$
or
argument based on equal charges:
$3.0 \times V=6.0 \times(9.0-V)$
$V=6.0 \mathrm{~V}$
(iii) potential difference $(=9.0-6.0)=3.0 \mathrm{~V}$
charge $(=3.0 \times 2.0(\mu))=6.0 \mu \mathrm{C}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

8 (a) P shown between earth symbol and voltmeter
(b) (i) gain $=\left(50 \times 10^{3}\right) / 100=500 \quad \mathrm{C} 1$
$V_{\text {IN }}(=5.0 / 500)=0.010 \mathrm{~V} \quad \mathrm{~A} 1$
(ii) $\quad V_{I N}(=5.0 / 5.0)=1.0 \mathrm{~V}$

A1
(c) $\begin{aligned} & \text { e.g. multi-range (volt)meter } \\ & \text { c.r.o. sensitivity control } \\ & \text { amplifier channel selector }\end{aligned}$

9 (a) (by Newton's third law) force on wire is up(wards) M1 by (Fleming's) left-hand rule/right-hand slap rule to give current A1 in direction left to right shown on diagram A1
(b) force \propto current or $F=B I L$ or $B(=0.080 / 6.0 L)=1 / 75 L$ C1
maximum current $=2.5 \times \sqrt{ } 2$

$$
\begin{equation*}
=3.54 \mathrm{~A} \tag{C1}
\end{equation*}
$$

maximum force in one direction $=(3.54 / 6.0) \times 0.080$
difference $(=2 \times 0.047)=0.094 \mathrm{~N}$
or
force varies from 0.047 N upwards to 0.047 N downwards
A1

10 nuclei emitting r.f. (pulse) B1

Larmor frequency/r.f. frequency emitted/detected depends on magnitude of magnetic B1
field
nuclei can be located (within a slice) B1
changing field enables position of detection (slice) to be changed

11 (a) (induced) e.m.f. proportional/equal to rate M1 of change of (magnetic) flux (linkage)
$\begin{array}{lll}\text { (b) (for same current) iron core gives large(r) (rates of change of) flux (linkage) } & \text { B1 } \\ \text { e.m.f induced in solenoid is greater (for same current) } & \text { M1 }\end{array}$ induced e.m.f. opposes applied e.m.f. so current smaller/acts to reduce current A1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

or
same supply so same induced e.m.f. balancing it
(B1)
(rate of change of) flux linkage is same
smaller current for same flux when core present
(c) e.g. (heating due to) eddy currents in core
(heating due to current in) resistance of coils
hysteresis losses/losses due to changing magnetic field in core
Any two of the above marking points, 1 mark each

12 (a) (i) electron diffraction/electron microscope (allow other sensible suggestions)
B1
(ii) photoelectric effect/Compton scattering (allow other sensible suggestions)

B1
(b) (i) arrow clear from -0.54 eV to -3.40 eV
(ii) $E=h c / \lambda$ or $E=h f$ and $c=f \lambda$

$$
\begin{equation*}
\lambda=\left(6.63 \times 10^{-34} \times 3.00 \times 10^{8}\right) /\left[(3.40-0.54) \times 1.60 \times 10^{-19}\right]=4.35 \times 10^{-7} \mathrm{~m} \tag{2}
\end{equation*}
$$

(c) (i) wavelength associated with a particle
that is moving/has momentum/has speed/has velocity
(ii) $\lambda=h / m v$

$$
\begin{align*}
v & =\left(6.63 \times 10^{-34}\right) /\left(9.11 \times 10^{-31} \times 4.35 \times 10^{-7}\right) \tag{C1}\\
& =1.67 \times 10^{3} \mathrm{~ms}^{-1}
\end{align*}
$$

computer is used to form/process/build up/store image B1
repeated for many/different (neighbouring) slices M1
to build up 3D imageA1

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	42

14 (a) (i) ${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$
(ii) ${ }_{0}^{1} n$

B1
(b) (i) $\Delta m=(29.97830+1.00867)-(26.98153+4.00260)$

C1

$$
\begin{aligned}
& =30.98697-30.98413 \\
& =2.84 \times 10^{-3} u
\end{aligned}
$$

C1
(ii) $E=c^{2} \Delta m$ or $m c^{2}$

C1

$$
\begin{aligned}
& =\left(3.0 \times 10^{8}\right)^{2} \times 2.84 \times 10^{-3} \times 1.66 \times 10^{-27} \\
& =4.2 \times 10^{-13} \mathrm{~J}
\end{aligned}
$$

A1
(c) mass of products is greater than mass of Al plus α or reaction causes (net) increase in (rest) mass (of the system)B1
α-particle must have at least this amount of kinetic energy

