

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/43 October/November 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Pa	ige 2	Mark Scheme Cambridge International AS/A Level – October/November 2016	Syllabus 9702	Pap 43	
1	(a)	gravitational force provides/is the centripetal force	5102	B1	
•	(4)	$GMm/r^2 = mv^2/r$ or $GMm/r^2 = mr\omega^2$ and $v = 2\pi r/T$ or $\omega = 2\pi/T$		M1	
		with algebra to $T^2 = 4\pi^2 r^3 / GM$		A1	[3]
		or			
		acceleration due to gravity is the centripetal acceleration		(B1)	
		$GM/r^2 = v^2/r$ or $GM/r^2 = r\omega^2$ and $v = 2\pi r/T$ or $\omega = 2\pi/T$		(M1)	
		with algebra to $T^2 = 4\pi^2 r^3 / GM$		(A1)	
	(b)	(i) equatorial orbit/orbits (directly) above the equator		B1	
		from west to east		B1	[2]
		(ii) $(24 \times 3600)^2 = 4\pi^2 r^3 / (6.67 \times 10^{-11} \times 6.0 \times 10^{24})$		C1	
		$r^3 = 7.57 \times 10^{22}$			
		$r = 4.2 \times 10^7 \mathrm{m}$		A1	[2]
	(c)	$(T/24)^2 = \{(2.64 \times 10^7)/(4.23 \times 10^7)\}^3$ = 0.243		B1	
		<i>T</i> = 12 hours		A1	[2]
		or			
		$k (= T^2/r^3) = 24^2/(4.23 \times 10^7)^3$ = 7.61 × 10 ⁻²¹		(B1)	
		$T^2 (= kr^3) = 7.61 \times 10^{-21} \times (2.64 \times 10^7)^3$ = 140			
		<i>T</i> = 12 hours		(A1)	
2	(a)	(i) $p \propto T$ or pV/T = constant or $pV = nRT$		C1	
		<i>T</i> (= 5 × 300 =) 1500 K		A1	[2]
		(ii) $pV = nRT$			
		$1.0\times10^5\times4.0\times10^{-4}=n\times8.31\times300$			
		or $5.0 \times 10^5 \times 4.0 \times 10^{-4} = n \times 8.31 \times 1500$		C1	
		<i>n</i> = 0.016 mol		A1	[2]
		© UCLES 2016			

© UCLES 2016

age 3			Mark Scheme	Syllabus	Pap	
	(Cam	bridge International AS/A Level – October/November 2016	9702	43	
(b)	(i)	1.	heating/thermal energy supplied		B1	
		2.	work done on/to system		B1	[2]
	(ii)	1.	240 J		A1	
		2.	same value as given in 1 . (= 240 J) and zero given for 3 .		A1	
		3.	zero		A1	[3]
(a)	2k/	m = .	ω^2		M1	
	ω=	= 2πf			M1	
	(2 >	< 64 <i>1</i>	(0.810) = $(2\pi \times f)^2$ leading to $f = 2.0$ Hz		A1	[3]
(b)		= <i>w</i> x _c	o or $v_0 = 2\pi f x_0$			
		<i>w</i> (x ₀	$(x^2 - x^2)^{1/2}$ and $x = 0$		C1	
	v 0 :	= 2π	\times 2.0 \times 1.6 \times 10 ⁻²			
	:	= 0.2	20 m s ⁻¹		A1	[2]
(c)					B1 B1	[2]
(a)	(i)				B1 B1	[2]
		or				
					(B1) (B1)	
	(ii)	dist	· · · · · · · · · ·			
		or ana	alogue/signal is continuous (so cannot be regenerated)			
		<i>or</i> ana	alogue/signal is not discrete (so cannot be regenerated)		B1	
		nois	se is amplified with the signal		B1	[2]
	(b) (a) (b)	 (b) (i) (ii) (ii) (a) 2k/ (b) v₀ = (c) freed (c) freed (c) freed (c) freed (c) freed 	(b) (i) 1. 2. (ii) 1. 2. (ii) 1. 2. (i) 1. 2. 3. (a) $2k/m = \omega = 2\pi f$ ($2 \times 64/r$ (b) $v_0 = \omega x_0$ $or = \omega (x_0)$ $v = \omega (x_0)$ $v_0 = 2\pi$ = 0.2 (c) frequent maximum (a) (i) noise the or sign of 1 (ii) noise or analogous of 1 (iii) noise or analogous of 1 (iiii) noise or analogous of 1 (iiii) noise or analogous of	Cambridge International AS/A Level – October/November 2016(b) (i) 1. heating/thermal energy supplied2. work done on/to system(ii) 1. 240 J2. same value as given in 1. (= 240 J) and zero given for 3.3. zero(a) $2k/m = \omega^2$ $\omega = 2\pi f$ $(2 \times 64/0.810) = (2\pi \times f)^2$ leading to $f = 2.0$ Hz(b) $v_0 = \omega x_0$ or $v_0 = 2\pi f x_0$ or or $v = \omega(x_0^2 - x^2)^{1/2}$ and $x = 0$ $v_0 = 2\pi \times 2.0 \times 1.6 \times 10^{-2}$ $= 0.20$ ms ⁻¹ (c) frequency: reduced/decreasedmaximum speed: reduced/decreased(a) (i) noise/distortion is removed (from the signal) the (original) signal is reformed/reproduced/recovered/restored or or signal detected above/below a threshold creates new signal of 1s and 0s(ii) noise is superposed on the (displacement of the) signal/cannot be distinguished or analogue/signal is continuous (so cannot be regenerated)	Cambridge International AS/A Level - October/November 20169702(b) (i) 1. heating/thermal energy supplied2. work done on/to system(ii) 1. 240 J2. same value as given in 1. (= 240 J) and zero given for 3.3. zero3. zero(a) $2k/m = \omega^2$ $\omega = 2\pi f$ $(2 \times 64/0.810) = (2\pi \times f)^2$ leading to $f = 2.0$ Hz(b) $v_0 = \omega x_0$ or $v_0 = 2\pi f x_0$ or $v = \alpha (x_0^2 - x^2)^{1/2}$ and $x = 0$ $v_0 = 2\pi \times 2.0 \times 1.6 \times 10^{-2}$ $= 0.20 \text{ ms}^{-1}$ (c) frequency: reduced/decreasedmaximum speed: reduced/decreased(a) (i) noise/distortion is removed (from the signal) the (original) signal is reformed/reproduced/recovered/restored ororsignal detected above/below a threshold creates new signal of 1s and 0s(ii) noise is superposed on the (displacement of the) signal/cannot be distinguished or analogue/signal is continuous (so cannot be regenerated) or analogue/signal is not discrete (so cannot be regenerated)	Cambridge International AS/A Level - October/November 2016970243(b) (i) 1. heating/thermal energy suppliedB12. work done on/to systemB1(ii) 1. 240 JA12. same value as given in 1. (= 240 J) and zero given for 3.A13. zeroA1(a) $2k/m = a^2$ M1 $a = 2\pi f$ M1 $(2 \times 64/0.810) = (2\pi \times f)^2$ leading to $f = 2.0$ HzA1(b) $v_0 = ax_0$ or $v_0 = 2\pi fx_0$ C1 $or = a(x_0^2 - x^2)^{1/2}$ and $x = 0$ C1 $v_0 = 2\pi \times 2.0 \times 1.6 \times 10^{-2}$ A1(c) frequency: reduced/decreasedB1(a) (i) noise/distortion is removed (from the signal) the (original) signal is reformed/reproduced/recovered/restoredB1(a) (i) noise is superposed on the (displacement of the) signal/cannot be distinguished or analogue/signal is continuous (so cannot be regenerated) or analogue/signal is not discrete (so cannot be regenerated)B1

Page	e 4		Mark Scheme Cambridge International AS/A Level – October/November 2016	Syllabus 9702	Pape 43	
				9702	43	
(b	0)	(i)	$gain/dB = 10 \lg (P_2/P_1)$			
			$32 = 10 \log [P_{\text{MIN}} / (0.38 \times 10^{-6})]$ or			
			$-32 = 10 \text{lg} (0.38 \times 10^{-6} / P_{\text{MIN}})$		C1	
			$P_{\rm MIN} = 6.0 \times 10^{-4} {\rm W}$		A1	[2]
		(ii)	attenuation = $10 \log [(9.5 \times 10^{-3})/(6.02 \times 10^{-4})]$		C1	
			= 12 dB			
			attenuation per unit length (= $12/58$) = 0.21 dB km ⁻¹		A1	[2]
5 (a	a)	in a	n electric field, charges (in a conductor) would move		B1	
			movement of charge so zero field strength			
		or cha	trge moves until $F = 0 / E = 0$		B1	[2]
		or				
			irges in metal do not move		(B1)	
		no	(resultant) force on charges so no (electric) field		(B1)	
(k	b)	at F	P, $E_{\rm A} = (3.0 \times 10^{-12}) / [4 \pi \epsilon_0 (5.0 \times 10^{-2})^2]$ (= 10.79 N C ⁻¹)		M1	
		at F	P, $E_{\rm B}$ = $(12 \times 10^{-12})/[4\pi\epsilon_0(10 \times 10^{-2})^2]$ (= 10.79 NC ⁻¹)		M1	
		or				
			$0 \times 10^{-12}) / [4\pi \epsilon_0 (5.0 \times 10^{-2})^2] - (12 \times 10^{-12}) / [4\pi \epsilon_0 (10 \times 10^{-2})^2] = 0$			
		or (3.0	$0 \times 10^{-12}) / [4\pi \epsilon_0 (5.0 \times 10^{-2})^2] = (12 \times 10^{-12}) / [4\pi \epsilon_0 (10 \times 10^{-2})^2]$		(M2)	
		fiel	ds due to charged spheres are (equal and) <u>opposite in direction</u> , so <i>E</i>	⁻ = 0	A1	[3]
1-	- \	n t	ential = $8.99 \times 10^9 \{(3.0 \times 10^{-12})/(5.0 \times 10^{-2}) + (12 \times 10^{-12})/(10 \times 10^{-12})\}$	211	01	
(C	5)	ροι)}	C1	101
			= 1.62 V		A1	[2]
(c	d)	½n	$nv^2 = qV$			
		Eκ	$= \frac{1}{2} \times 107 \times 1.66 \times 10^{-27} \times v^2$		C1	
		qV	$= 47 \times 1.60 \times 10^{-19} \times 1.62$		C1	
		v ²	$= 1.37 \times 10^8$			
		v	$= 1.2 \times 10^4 \mathrm{ms^{-1}}$		A1	[3]

Pa	age	5	Mark Scheme Sylla	abus P	ape	r
				02	43	
6	(a)		erence to input (voltage) and output (voltage) re is no time delay between change in input and change in output	B		[2]
		or				
			erence to rate at which output voltage changes nite rate of change (of output voltage)	(B ² (B ²		
	(b)	(i)	2.00/3.00 = 1.50/ <i>R</i>	С	;1	
			or			
			$V_{+} = (3.00 \times 4.5)/(2.00 + 3.00) = 2.7$ 2.7 = 4.5 × $R/(R + 1.50)$	(C ²	1)	
			resistance = $2.25 \mathrm{k}\Omega$	A	.1	[2]
		(ii)	1. correct symbol for LED two LEDs connected with opposite polarities between V_{OUT} and eart	M h A		[2]
			2. below 24 °C, $R_T > 1.5 \text{ k}\Omega$ or resistance of thermistor increases/high	В	81	
			$V_{-} < V_{+}$ or V_{-} decreases/low (must not contradict initial statement)	М	1	
			V_{OUT} is positive/+5 (V) and LED labelled as 'pointing' from V_{OUT} to early	arth A	.1	[3]
7	(a)	reg	ion (of space) where a force is experienced by a particle	В	31	[1]
	(b)	(i)	gravitational	В	1	
		(ii)	gravitational and electric	В	1	
		(iii)	gravitational, electric and magnetic	В	81	[3]
	(c)	(i)	force (always) normal to direction of motion	М	1	
			(magnitude of) force constant			
			or speed is constant/kinetic energy is constant	М	1	
			magnetic force provides/is the centripetal force	А	.1	[3]
		(ii)	$mv^2/r = Bqv$	В	31	
			momentum or p or $mv = Bqr$	В	51	[2]

Ρ	age 6	Mark Scheme	Syllabus	Pap	
		Cambridge International AS/A Level – October/November 2016	9702	43	
8	stron	g <u>uniform</u> magnetic field		B1	
	nucle	i precess/rotate about field (direction)		(1)	
	radio-	frequency pulse (applied)		B1	
	R.F. (or pulse is at Larmor frequency/frequency of precession		(1)	
	cause	es resonance/excitation (of nuclei)/nuclei absorb energy		B1	
	on rel	axation/de-excitation, nuclei emit r.f./pulse		B1	
	(emitt	ed) r.f./pulse detected and processed		(1)	
	non-u	niform magnetic field		B1	
	allows	s position of nuclei to be located		B1	
	allows	s for location of detection to be changed/different slices to be studied		(1)	
	any tu	vo of the points marked (1)		B2	[8]
9	• • •	nduced) e.m.f. proportional to rate f change of (magnetic) flux (linkage)		M1 A1	[2]
	(b) fl	ux linkage = BAN			
		= $\pi \times 10^{-3} \times 2.8 \times \pi \times (1.6 \times 10^{-2})^2 \times 85 = 6.0 \times 10^{-4}$ Wb		B1	[1]
	(c) e	.m.f. = $\Delta N \Phi / \Delta t$			
		$= (6.0 \times 10^{-4} \times 2) / 0.30$		C1	
		= 4.0 mV		A1	[2]
	(d) s	ketch: $E = 0$ for $t = 0 \rightarrow 0.3$ s, 0.6 s $\rightarrow 1.0$ s, 1.6 s $\rightarrow 2.0$ s		B1	
	(-) -	$E = 4$ mV for $t = 0.3$ s $\rightarrow 0.6$ s (either polarity)		B1	
		$E = 2 \text{ mV}$ for $t = 1.0 \text{ s} \rightarrow 1.6 \text{ s}$			
		$E = 2 111 \times 101 \ l = 1.05 \rightarrow 1.05$		B1	

with opposite polarity B1 [4]

Pa	age 7	Mark Scheme	Syllabus	Pap	er
		Cambridge International AS/A Level – October/November 2016	9702	43	
10	(a)	electromagnetic radiation/photons incident on a surface		B1	
		causes emission of electrons (from the surface)		B1	[2]
	(b)	$E = hc / \lambda$			
		= $(6.63 \times 10^{-34} \times 3.00 \times 10^8) / (436 \times 10^{-9})$		C1	
		= $4.56 \times 10^{-19} \text{ J} (4.6 \times 10^{-19} \text{ J})$		A1	[2]
	(c)	(i) $\Phi = hc / \lambda_0$			
		$\lambda_0 = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (1.4 \times 1.60 \times 10^{-19})$		C1	
		= 890 nm		A1	[2]
		(ii) $\lambda_0 = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (4.5 \times 1.60 \times 10^{-19})$			
		= 280 nm		A1	[1]
	(d)	caesium: wavelength of photon less than threshold wavelength (or v.v.)			
		or			
		$\lambda_0 = 890 \mathrm{nm} > 436 \mathrm{nm}$		A1	
		so yes			
		tungsten: wavelength of photon greater than threshold wavelength (or v.v.) or			
		$\lambda_0 = 280 \text{nm} < 436 \text{nm}$ so no		A1	[2]
11	in n	etal, conduction band overlaps valence band/no forbidden band/no ban	ld gap	B1	
	as t	emperature rises, no increase in number of free electrons/charge carrier	rs	B1	
	as t	emperature rises, lattice vibrations increase		M1	
	(lati	ice) vibrations restrict movement of electrons/charge carriers		M1	
	(cui	rent decreases) so resistance increases		A1	[5]

Ρά	Page 8		Mark Scheme	Syllabus	Раре	ər
			Cambridge International AS/A Level – October/November 2016	9702	43	
12	(a)	(i)	time for number of atoms/nuclei or activity to be reduced to one hal	lf	M1	
			reference to (number of) original nuclide/single isotope			
			or reference to half of original value/initial activity		A1	[2]
		(ii)	$A = A_0 \exp(-\lambda t)$ and either $t = t_{\frac{1}{2}}, A = \frac{1}{2}A_0$ or $\frac{1}{2}A_0 = A_0 \exp(-\lambda t_{\frac{1}{2}})$		M1	
			so $\ln 2 = \lambda t_{\gamma_2}$ (and $\ln 2 = 0.693$), hence $0.693 = \lambda t_{\gamma_2}$		A1	[2]
	(b)	A	$= \lambda N$			
		Ν	= 200/(2.1 × 10 ⁻⁶)		C1	
			$= 9.52 \times 10^{7}$		C1	
			ass = $(9.52 \times 10^7 \times 222 \times 10^{-3})/(6.02 \times 10^{23})$			
		or ma	ass = $9.52 \times 10^7 \times 222 \times 1.66 \times 10^{-27}$		C1	
			$= 3.5 \times 10^{-17} \text{kg}$		A1	[4]