Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

1 (a) gravitational force provides/is the centripetal force
$G M m / r^{2}=m v^{2} / r$ or $G M m / r^{2}=m r \omega^{2}$
and $v=2 \pi r / T \quad$ or $\quad \omega=2 \pi / T$ M1
with algebra to $T^{2}=4 \pi^{2} r^{3} / G M$
or
acceleration due to gravity is the centripetal acceleration
$G M / r^{2}=v^{2} / r \quad$ or $\quad G M / r^{2}=r \omega^{2}$
and $v=2 \pi r / T \quad$ or $\quad \omega=2 \pi / T$
with algebra to $T^{2}=4 \pi^{2} r^{3} / G M$
(b) (i) equatorial orbit/orbits (directly) above the equator
from west to east B1
(ii) $(24 \times 3600)^{2}=4 \pi^{2} r^{3} /\left(6.67 \times 10^{-11} \times 6.0 \times 10^{24}\right)$

$$
\begin{align*}
r^{3} & =7.57 \times 10^{22} \\
r & =4.2 \times 10^{7} \mathrm{~m} \tag{A1}
\end{align*}
$$

(c) $(T / 24)^{2}=\left\{\left(2.64 \times 10^{7}\right) /\left(4.23 \times 10^{7}\right)\right\}^{3}$

$$
=0.243
$$

$T=12$ hours
or

$$
\begin{align*}
k\left(=T^{2} / r^{3}\right) & =24^{2} /\left(4.23 \times 10^{7}\right)^{3} \\
& =7.61 \times 10^{-21} \\
T^{2}\left(=k r^{3}\right)= & 7.61 \times 10^{-21} \times\left(2.64 \times 10^{7}\right)^{3} \\
& =140 \tag{A1}
\end{align*}
$$

$T=12$ hours

2 (a) (i) $p \propto T$ or $p V / T=$ constant or $p V=n R T$

$$
T(=5 \times 300=) 1500 \mathrm{~K}
$$

(ii) $p V=n R T$

$$
\begin{array}{ll}
1.0 \times 10^{5} \times 4.0 \times 10^{-4}=n \times 8.31 \times 300 & \\
\text { or } \\
5.0 \times 10^{5} \times 4.0 \times 10^{-4}=n \times 8.31 \times 1500 & \mathrm{C} 1 \tag{C1}\\
n=0.016 \mathrm{~mol} & \mathrm{~A} 1
\end{array}
$$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

(b) (i) 1. heating/thermal energy supplied B1
2. work done on/to system B1
(ii) 1. 240 J A 1
2. same value as given in 1. (= 240 J) and zero given for 3.A1
3. zeroA1
[3]
3 (a) $2 k / m=\omega^{2}$ M1
$\omega=2 \pi f$ M1
$(2 \times 64 / 0.810)=(2 \pi \times f)^{2}$ leading to $f=2.0 \mathrm{~Hz}$ A1
(b) $v_{0}=\omega x_{0}$ or $v_{0}=2 \pi f x_{0}$
or

$$
\begin{equation*}
v=\omega\left(x_{0}^{2}-x^{2}\right)^{1 / 2} \text { and } x=0 \tag{C1}
\end{equation*}
$$

$$
v_{0}=2 \pi \times 2.0 \times 1.6 \times 10^{-2}
$$

$$
=0.20 \mathrm{~ms}^{-1}
$$

(c) frequency: reduced/decreased B1
maximum speed: reduced/decreased B1
[2]
4 (a) (i) noise/distortion is removed (from the signal) B1
the (original) signal is reformed/reproduced/recovered/restored B1
or
signal detected above/below a threshold creates new signalof 1 s and 0 s
(ii) noise is superposed on the (displacement of the) signal/cannot be distinguished
or
analogue/signal is continuous (so cannot be regenerated)
or
analogue/signal is not discrete (so cannot be regenerated)
noise is amplified with the signal

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

(b) (i) gain $/ \mathrm{dB}=10 \lg \left(P_{2} / P_{1}\right)$

$$
\begin{aligned}
& 32=10 \lg \left[P_{\text {MIN }} /\left(0.38 \times 10^{-6}\right)\right] \\
& \text { or } \\
& -32=10 \lg \left(0.38 \times 10^{-6} / P_{\text {MIN }}\right)
\end{aligned}
$$

$$
P_{\text {MIN }}=6.0 \times 10^{-4} \mathrm{~W}
$$

(ii) attenuation $=10 \lg \left[\left(9.5 \times 10^{-3}\right) /\left(6.02 \times 10^{-4}\right)\right]$

$$
=12 \mathrm{~dB}
$$

attenuation per unit length $(=12 / 58)=0.21 \mathrm{~dB} \mathrm{~km}^{-1}$

5 (a) in an electric field, charges (in a conductor) would move
no movement of charge so zero field strength
or
charge moves until $F=0 / E=0$
charges in metal do not move
(b) at P, $E_{\mathrm{A}}=\left(3.0 \times 10^{-12}\right) /\left[4 \pi \varepsilon_{0}\left(5.0 \times 10^{-2}\right)^{2}\right]\left(=10.79 \mathrm{NC}^{-1}\right)$
at $\mathrm{P}, E_{\mathrm{B}}=\left(12 \times 10^{-12}\right) /\left[4 \pi \varepsilon_{0}\left(10 \times 10^{-2}\right)^{2}\right]\left(=10.79 \mathrm{NC}^{-1}\right)$
or
$\left(3.0 \times 10^{-12}\right) /\left[4 \pi \varepsilon_{0}\left(5.0 \times 10^{-2}\right)^{2}\right]-\left(12 \times 10^{-12}\right) /\left[4 \pi \varepsilon_{0}\left(10 \times 10^{-2}\right)^{2}\right]=0$
or
$\left(3.0 \times 10^{-12}\right) /\left[4 \pi \varepsilon_{0}\left(5.0 \times 10^{-2}\right)^{2}\right]=\left(12 \times 10^{-12}\right) /\left[4 \pi \varepsilon_{0}\left(10 \times 10^{-2}\right)^{2}\right]$
fields due to charged spheres are (equal and) opposite in direction, so $E=0$
(c) potential $=8.99 \times 10^{9}\left\{\left(3.0 \times 10^{-12}\right) /\left(5.0 \times 10^{-2}\right)+\left(12 \times 10^{-12}\right) /\left(10 \times 10^{-2}\right)\right\}$

$$
=1.62 \mathrm{~V}
$$

(d) $1 / 2 m v^{2}=q V$
$E_{K}=1 / 2 \times 107 \times 1.66 \times 10^{-27} \times v^{2}$
$q V=47 \times 1.60 \times 10^{-19} \times 1.62$
$v^{2}=1.37 \times 10^{8}$
$v=1.2 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

6 (a) reference to input (voltage) and output (voltage) B1
there is no time delay between change in input and change in outputB1
or

or
reference to rate at which output voltage changes
infinite rate of change (of output voltage)

infinite rate of change (of output voltage)(B1)(B1)
(b) (i) $2.00 / 3.00=1.50 / R$ C1
or
$V_{+}=(3.00 \times 4.5) /(2.00+3.00)=2.7$
$2.7=4.5 \times R /(R+1.50)$(C1)
resistance $=2.25 \mathrm{k} \Omega$ A1[2]
(ii) 1. correct symbol for LED M1
two LEDs connected with opposite polarities between $V_{\text {оut }}$ and earth A1
2. below $24^{\circ} \mathrm{C}, R_{\mathrm{T}}>1.5 \mathrm{k} \Omega$ or resistance of thermistor increases/high B1 1
$V_{-}<V_{+}$or V_{-}decreases/low (must not contradict initial statement) M1
$V_{\text {out }}$ is positive/+5 (V) and LED labelled as 'pointing' from $V_{\text {Out }}$ to earth A1
■
[3]
7 (a) region (of space) where a force is experienced by a particleB1
(b) (i) gravitational B1
(ii) gravitational and electric B1
(iii) gravitational, electric and magnetic B1
[3]M1(c) (i) force (always) normal to direction of motion(magnitude of) force constant
or
speed is constant/kinetic energy is constant M1
magnetic force provides/is the centripetal force A1
(ii) $m v^{2} / r=B q v$ B1
momentum or p or $m v=B q r$ B1
[2]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

8 strong uniform magnetic field B1
nuclei precess/rotate about field (direction) (1)
radio-frequency pulse (applied) B1
R.F. or pulse is at Larmor frequency/frequency of precession (1)
causes resonance/excitation (of nuclei)/nuclei absorb energy B1
on relaxation/de-excitation, nuclei emit r.f./pulse B1
(emitted) r.f./pulse detected and processed(1)
non-uniform magnetic field B1
allows position of nuclei to be located B1
allows for location of detection to be changed/different slices to be studied (1)
any two of the points marked (1) B2
9 (a) (induced) e.m.f. proportional to rate M1 of change of (magnetic) flux (linkage) A1
(b) flux linkage $=B A N$

$$
\begin{equation*}
=\pi \times 10^{-3} \times 2.8 \times \pi \times\left(1.6 \times 10^{-2}\right)^{2} \times 85=6.0 \times 10^{-4} \mathrm{~Wb} \tag{B1}
\end{equation*}
$$

(c) e.m.f. $=\Delta N \Phi / \Delta t$

$$
\begin{array}{ll}
=\left(6.0 \times 10^{-4} \times 2\right) / 0.30 & \mathrm{C} 1 \\
=4.0 \mathrm{mV} & \mathrm{~A} 1
\end{array}
$$

(d) sketch: $E=0$ for $t=0 \rightarrow 0.3 \mathrm{~s}, 0.6 \mathrm{~s} \rightarrow 1.0 \mathrm{~s}, 1.6 \mathrm{~s} \rightarrow 2.0 \mathrm{~s}$B1
$E=4 \mathrm{mV}$ for $t=0.3 \mathrm{~s} \rightarrow 0.6 \mathrm{~s}$ (either polarity) B1
$E=2 \mathrm{mV}$ for $t=1.0 \mathrm{~s} \rightarrow 1.6 \mathrm{~s}$ B1
with opposite polarity B1
[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

10 (a) electromagnetic radiation/photons incident on a surface
causes emission of electrons (from the surface)
(b) $E=h c / \lambda$

$$
\begin{equation*}
=\left(6.63 \times 10^{-34} \times 3.00 \times 10^{8}\right) /\left(436 \times 10^{-9}\right) \tag{C1}
\end{equation*}
$$

$$
=4.56 \times 10^{-19} \mathrm{~J}\left(4.6 \times 10^{-19} \mathrm{~J}\right)
$$

(c) (i) $\Phi=h c / \lambda_{0}$

$$
\begin{aligned}
\lambda_{0} & =\left(6.63 \times 10^{-34} \times 3.00 \times 10^{8}\right) /\left(1.4 \times 1.60 \times 10^{-19}\right) \\
& =890 \mathrm{~nm}
\end{aligned}
$$

(ii) $\lambda_{0}=\left(6.63 \times 10^{-34} \times 3.00 \times 10^{8}\right) /\left(4.5 \times 1.60 \times 10^{-19}\right)$

$$
=280 \mathrm{~nm}
$$

(d) caesium:
wavelength of photon less than threshold wavelength (or v.v.)
or
$\lambda_{0}=890 \mathrm{~nm}>436 \mathrm{~nm}$
so yes
tungsten:
wavelength of photon greater than threshold wavelength (or v.v.)
or
$\lambda_{0}=280 \mathrm{~nm}<436 \mathrm{~nm}$
so no
A1

11 in metal, conduction band overlaps valence band/no forbidden band/no band gap B1
as temperature rises, no increase in number of free electrons/charge carriers B1
as temperature rises, lattice vibrations increase M1
(lattice) vibrations restrict movement of electrons/charge carriers M1
(current decreases) so resistance increases
A1
(current decreases) soresistance increases

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	43

12 (a) (i) time for number of atoms/nuclei or activity to be reduced to one half
reference to (number of...) original nuclide/single isotope or reference to half of original value/initial activity A1
(ii) $A=A_{0} \exp (-\lambda t)$ and either $t=t_{1 / 2}, A=1 / 2 A_{0}$ or $1 / 2 A_{0}=A_{0} \exp \left(-\lambda t \frac{1}{2}\right) \quad$ M1
so $\ln 2=\lambda t / \sqrt{2}($ and $\ln 2=0.693)$, hence $0.693=\lambda t / 1 / 2$ A1
(b) $A=\lambda N$

$$
N=200 /\left(2.1 \times 10^{-6}\right) \quad \mathrm{C} 1
$$

$$
\begin{equation*}
=9.52 \times 10^{7} \tag{C1}
\end{equation*}
$$

```
mass=(9.52\times107\times222 \times10-3})/(6.02\times1\mp@subsup{0}{}{23}
or
```


$=3.5 \times 10^{-17} \mathrm{~kg}$

