Cambridge
International
AS \& A Level
Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

## PHYSICS

9702/02
Paper 2 AS Level Structured Questions SPECIMEN MARK SCHEME

For Examination from 2016

1 hour 15 minutes

## MAXIMUM MARK: 60

1 (a) (i) $V$ units: $\mathrm{m}^{3}$ (allow metres cubed or cubic metres)
(ii) Pressure units: $\mathrm{kgms}^{-2} / \mathrm{m}^{2} \quad$ (allow use of $P=\rho g h$ ) M1 Units: $\mathrm{kgm}^{-1} \mathrm{~s}^{-2}$

A0
(b) V/t units: $\mathrm{m}^{3} \mathrm{~s}^{-1} \quad \mathrm{~B} 1$

Clear substitution of units for $P, r^{4}$ and $l$ M1
$C=\frac{\pi P r^{4}}{8 V t^{-1} l}=\frac{\mathrm{kgm}^{-1} \mathrm{~s}^{-2} \mathrm{~m}^{4}}{\mathrm{~m}^{3} \mathrm{~s}^{-1} \mathrm{~m}}$
Units: $\mathrm{kgm}^{-1} \mathrm{~s}^{-1}$
A1
(8 or $\pi$ in final answer max. 2. Use of dimensions max. 2.)
[Total: 5]

2 (a) shape and orientation correct and forces labelled and arrows correct
B1 angles correct/labelled

B1
(b) (i) $\begin{array}{rlrl}T & \cos 18^{\circ}=\mathrm{W} & & \mathrm{C} 1 \\ T & =520 / \cos 18^{\circ}=547 \mathrm{~N} & \text { (Scale diagram: allow } \pm 20 \mathrm{~N}) & \mathrm{A} 1 \\ \text { (ii) } R & =T \sin 18^{\circ} & & \\ & =169 \mathrm{~N}\end{array}$
(c) $\theta$ is larger hence $\cos \theta$ is smaller $(T=W / \cos \theta) \quad$ M1 hence $T$ is larger

3 (a) work done is the force $\times$ the distance moved / displacement in the direction of the force or
work is done when a force moves in the direction of the force
B1
(b) component of weight $=850 \times 9.81 \times \sin 7.5^{\circ} \quad \mathrm{C} 1$

$$
=1090 \mathrm{~N}
$$

A1
(no credit for use of incorrect trigonometrical function)
(c) (i) $\Sigma F=4600-1090(=3510)$ M1
deceleration $=3510 / 850 \quad$ A1
$=4.1 \mathrm{~m} \mathrm{~s}^{-2} \quad \mathrm{AO}$
[2]
(ii) $v^{2}=u^{2}+2 a s$
$0=25^{2}+2 \times(-4.1) \times s$
C1
$s=625 / 8.2$

$$
=76 \mathrm{~m}
$$

A1
(allow full credit for calculation of time (6.05 s) and then s)
(iii) 1. kinetic energy $\begin{aligned} & =1 / 2 m v^{2} \\ & =0.5 \times 850 \times 25^{2} \\ & =2.7 \times 10^{5} \mathrm{~J}\end{aligned}$

$$
=2.7 \times 10^{5} \mathrm{~J}
$$

2. work done $=4600 \times 75.7$

$$
=3.5 \times 10^{5} \mathrm{~J}
$$

(iv) difference is the loss in potential energy (or equivalent wording) B1

A1

4 (a) torque is the product of one of the forces M1 and the perpendicular distance between the forces
(b) (i) torque $=8 \times 1.5=12(\mathrm{Nm})$
(ii) there is a resultant torque (there is no resultant force)
(the rod rotates) and is not in equilibrium

5 (a) (i) $I_{1}=I_{2}+I_{3}$
B1
(ii) $I=V / R$
$R=[1 / 6+1 / 10]^{-1}[$ total $R=3.75 \Omega$ ]
or $I_{2}=12 / 10 \quad(=1.2 \mathrm{~A})$
C1
$I_{1}=12 / 3.75=3.2 \mathrm{~A}$
or $I_{3}=12 / 6 \quad(=2.0 \mathrm{~A})$
or $I_{1}=1.2+2.0=3.2 \mathrm{~A}$
C1
A1
(iii) power $=V I$ or $I^{2} R$ or $V^{2} / R$

C1
$x=\frac{\text { power in wire }}{\text { power in series resistors }}=\frac{I_{2}^{2} R_{w}}{I_{3}^{2} R_{s}}$ or $\frac{V I_{2}}{V I_{3}}$ or $\frac{V^{2} / R_{w}}{V^{2} / R_{s}}$ $x=12 \times 1.2 / 12 \times 2.0=0.6(0)$ allow $3 / 5$ or $3: 5$
(b) p.d. $\mathrm{BC}: 12-12 \times 0.4=7.2(\mathrm{~V}) /$ p.d. $\mathrm{AC}=4.8(\mathrm{~V})$

C1
p.d. $\mathrm{BD}: 12-12 \times 4 / 6=4.0(\mathrm{~V}) /$ p.d. $\mathrm{AD}=8.0(\mathrm{~V})$

C1
p.d. $=3.2 \mathrm{~V}$
[Total: 10]

6 (a) extension is proportional to force (for small extensions)
(b) (i) point beyond which (the spring) does not return to its original length when the load is removed

B1
(ii) gradient of graph $=80 \mathrm{Nm}^{-1}$

A1
(iii) work done is area under graph $/ 1 / 2 F x / 1 / 2 k x^{2}$

$$
=0.5 \times 6.4 \times 0.08=0.256 \mathrm{~J}(\text { allow } 0.26 \mathrm{~J})
$$

C1
A1

7 (a) (i) amplitude $=7.6 \mathrm{~mm}$ (allow 7.5 mm ) A1
(ii) $180^{\circ} / \pi \mathrm{rad} \quad \mathrm{A} 1$
(iii) $v=f \times \lambda$

$$
\begin{array}{ll}
=15 \times 0.8 & \mathrm{C} 1  \tag{C1}\\
=12 \mathrm{~m} \mathrm{~s}^{-1} & \text { A1 }
\end{array}
$$

(b) (i) zero (rad)
(ii) antinode: maximum amplitude node: zero amplitude / displacement A1
(iii) 3 A1
(iv) horizontal line through central section of wave B1
[Total: 8]

8 (a) the observed frequency is different to the emitted frequency when there is relative motion between the source and observer

B1
[1]
(b) (i) $\begin{aligned} f & =f_{\mathrm{s}} v /\left(v \pm v_{\mathrm{s}}\right) & & \mathrm{C} 1 \\ & =(880 \times 340) /(340-44)=1010 \mathrm{~Hz} & & \mathrm{~A} 1\end{aligned}$
[2]
(ii) $f=(880 \times 340) /(340+44)=780 \mathrm{~Hz}$

A1

9 (a) hadrons (or baryons)
B1
(b) ${ }_{1}^{1} \mathrm{p} \rightarrow{ }_{0}^{1} \mathrm{n}+{ }_{1}^{0} \beta^{+}+v_{\mathrm{e}}$

One mark for each correct term on RHS B3
(c) up up down B1
(d) an up changes to a down

B1

## Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: these are method marks upon which A-marks (accuracy marks) later depend. for an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: these are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

## Conventions within the marking scheme

## BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING
In the marking scheme, underlining indicates information that is essential for marks to be awarded.

## BLANK PAGE

