Cambridge
International
AS \& A Level
Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/04
Paper 4 A Level Structured Questions SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 100

This document consists of 6 printed pages.

1 (a) (i) $F_{\mathrm{G}}=G M m / R^{2}$
C1

$$
\begin{aligned}
& =\left(6.67 \times 10^{-11} \times 5.98 \times 10^{24}\right) /\left(6380 \times 10^{3}\right)^{2} \\
& =9.80 \mathrm{~N}
\end{aligned}
$$

A1
[2]
(ii) $\quad F_{\mathrm{C}}=m R \omega^{2}$

C1
$\omega=2 \pi / T$ C1
$F_{\mathrm{C}}=\left(4 \pi^{2} \times 6380 \times 10^{3}\right) /\left(8.62 \times 10^{4}\right)^{2}$ $=0.0339 \mathrm{~N}$

A1
(iii) $F_{G}-F_{C}=9.77 \mathrm{~N}$
(b) $9.77 \mathrm{~m} \mathrm{~s}^{-2}$ because acceleration is resultant force per unit mass

B1
[Total: 7]

2 (a) $p V / T=\mathrm{constant}$
$T=\left(6.5 \times 10^{6} \times 30 \times 300\right) /\left(1.1 \times 10^{5} \times 540\right)$

$$
=985 \mathrm{~K}
$$

(b) (i) $\Delta U=q+w$
symbols explained ($q=$ heating, $w=$ work)
M1
consistent set of directions of energy change A1
(ii) q is zero B1
$\Delta U=w$ and so U increases
U increases so E_{K} of atoms increases and T increases
B1
A1
A1
[2]
[2]
[3]
[Total: 7]

3 (a) (i) $\omega=2 \pi f$
(ii) either (-)ve because a and x are in opposite directions or a is always directed towards mean position
(b) (i) forces in springs are $k(e+x)$ and $k(e-x)$

C1
resultant $=k(e+x)-k(e-x)$
M1
$=2 k x$
AO
(ii) $F=m a \quad \mathrm{~B} 1$
$a=-2 k x / m$
A0
$(-)$ sign explained B1
(iii) $\quad \omega^{2}=2 k / m \quad$ C1
$(2 \pi f)^{2}=(2 \times 120) / 0.90 \quad$ C1
$f=2.6 \mathrm{~Hz}$

B1
B1
[Total: 9]

4 (a) amplitude of carrier wave varies M1
in synchrony with displacement of information signal
A1
(b) graph: three vertical lines M1
symmetrical with smaller sidebands
A1
at frequencies 70,75 and 80 kHz
A1
(c) bandwidth $=10 \mathrm{kHz}$

B1
[Total: 6]

5 (a) unwanted energy / power that is random B1
(b) $\begin{array}{ll}\text { number of } \mathrm{dB}=10 \lg \left(P_{\text {OUT }} / P_{\text {IN }}\right) & \mathrm{C} 1 \\ 63=10 \lg \left(P_{\text {OUT }} /\left(2.5 \times 10^{-6}\right)\right) & \mathrm{C} 1 \\ P_{\text {OUT }}=5.0 \mathrm{~W} & \mathrm{~A} 1\end{array}$ (10
(c) attenuation $=10 \lg \left(5.0 /\left(3.5 \times 10^{-8}\right)\right)=81.5 \mathrm{~dB}$

C1
length $=81.5 / 12=6.8 \mathrm{~km}$
A1

6 (a) field strength equals the potential gradient M1
field strength and potential gradient are in opposite directions
A1
(b) at $x=10 \mathrm{~cm}$, force is maximum M1
because the gradient is largest A1
repulsion / force to right because sphere and proton have like charges B1
as x increases, force decreases B1
becomes zero at $x=35 \mathrm{~cm} \quad$ B1
as x increases from $x=35 \mathrm{~cm}$ to $x=41 \mathrm{~cm}$, force increases in opposite direction

7 (a) +-
B1
(b) (i) $\begin{array}{ll}\text { 1. } 4.5 \mathrm{~V} & \mathrm{~A} 1 \\ & \text { 2. use of potential divider formula }(9 \times 800) /(800+2200)\end{array}$
2. use of potential divider formula $(9 \times 800) /(800+2200)$
2.4 V
3. -9.0 V B1
(ii) LED G (allow e.c.f. from (i)) B1
(c) as temperature rises, potential at B increases M1 at $60^{\circ} \mathrm{C}$, green goes out and red comes on (allow ecf from (b)(ii)) A1
[2]
[3]

8 (a) (i) 50 mT (allow $50 \pm 1 \mathrm{mT}$ for full credit)
(ii) flux linkage $=B A N$

$$
=50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150
$$

$$
=3.0 \times 10^{-4} \mathrm{~Wb}
$$

(b) e.m.f. (induced) is proportional to the rate of change of (magnetic) flux (linkage) (allow 'rate of cutting')
(c) (i) new flux linkage $=8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$

$$
\begin{aligned}
& =4.8 \times 10^{-4} \mathrm{~Wb} \\
\text { change } & =2.52 \times 10^{-4} \mathrm{~Wb}
\end{aligned}
$$

(ii) e.m.f. $=\left(2.52 \times 10^{-4}\right) / 0.30$
$=8.4 \times 10^{-4} \mathrm{~V}$
(d) flux linkage decreases as distance increases so speed must increase to keep rate constant

9 (a) into the plane of the paper / downwards B1
(b) (i) centripetal force $=m v^{2} / r$
$m v^{2} / r=B q v$ hence $q / m=v / r B$ (some algebra essential)
(ii) $\quad \mathrm{q} / \mathrm{m}=\left(8.2 \times 10^{6}\right) /\left(23 \times 10^{-2} \times 0.74\right)$

$$
=4.82 \times 10^{7} \mathrm{Ckg}^{-1}
$$

10 (a) single diode
either in series with R or in series with a.c. supply
(b) (i) 1. 5.4 V (allow $\pm 0.1 \mathrm{~V})$
2. $V=I R$
$I=5.4 /\left(1.5 \times 10^{3}\right)$ $=3.6 \times 10^{-3} \mathrm{~A}$
3. \quad time $=0.027 \mathrm{~s}$
(ii) 1. $Q=I t$

$$
\begin{array}{ll}
=3.6 \times 10^{-3} \times 0.027 & \mathrm{C} 1 \\
=9.72 \times 10^{-5} \mathrm{C} & \mathrm{~A} 1 \tag{2}
\end{array}
$$

2. $C=\Delta Q / \Delta V$ (allow $Q N$) C1

$$
\begin{aligned}
& =\left(9.72 \times 10^{-5}\right) / 1.2 \\
& =8.1 \times 10^{-5} \mathrm{~F}
\end{aligned}
$$

A1

A1 C1 M1

B1
B1
[2]
[Total: 11]

B1
B1
C1
A1
[Total: 5]

M1

A1
A1
[2]
[2] M1 A0 A1 1 .

Tota.
[1]
[2]
[2]

A1
[2]
[1]
[2]
(c) line: reasonable shape with less ripple B1
11 at $0 \mathrm{~K}, \mathrm{VB}$ is filled, CB is empty B1
as temperature rises, electrons gain energy to enter CB M1
positive holes are formed in VB A1
lattice vibrations increase B1
effect due to increase in charge carriers outweighs effect due to increase in lattice vibrations M1
so current larger and resistance smaller A1
(b) (i) $1 / 2=\mathrm{e}^{-\mu}$
$\mu=0.693 \mathrm{~mm}^{-1}$
(ii) $\begin{array}{ll}\mathrm{X} \text {-ray photons are more penetrating } & \mathrm{M} 1 \\ \mu \text { is smaller } & \mathrm{A} 1\end{array} ~$
per unit time
(ii) greater energy of α-particle

M0
(parent) nucleus less stable A1
nucleus more likely to decay A1
hence radium-224
A1
[3]
(b) (i) $\lambda=\ln 2 / 3.6$

$$
=0.193
$$

A1
unit: day $^{-1}$ A1
(allow full credit for $2.23 \times 10^{-6} \mathrm{~s}^{-1}$)
(ii) $N=\left\{\left(2.24 \times 10^{-3}\right) / 224\right\} \times 6.02 \times 10^{23} \quad \mathrm{C} 1$
$=6.02 \times 10^{18}$
activity $=\lambda N$
$=2.23 \times 10^{-6} \times 6.02 \times 10^{18}$
C1
$=1.3 \times 10^{13} \mathrm{~Bq}$

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.
B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or answer marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracketed information in order to earn the available marks.

UNDERLINING
In the marking scheme, underlining indicates information that is essential for marks to be awarded.

