CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the March 2016 series

9701 CHEMISTRY

9701/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9701	22

Question	Answer	Mark	Total
1 (a) (i)	greater attractive force OR greater force between nucleus and (outer) electrons proton number/atomic number/nuclear charge increases across period AND electrons occupy same shell/shielding roughly constant	[1] [1]	[2]
(ii)	sulfur's electron removed from full (3p) orbital OR sulfur has two electrons in the same orbital electron-electron repulsion (reduces energy required)	[1] [1]	[2]
(iii)	sodium has mobile/free electrons/electrons free (to move throughout the structure) phosphorus is simple/covalent/molecular	[1] [1]	[2]
(iv)	magnesium has two free/delocalised/outer/valence electrons per atom OR more free/delocalised/outer electrons than sodium	[1]	[1]
(b) (i)	$\begin{aligned} & \mathbf{A}=\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \\ & \mathbf{B}=\mathrm{H}_{2} \\ & \mathbf{C}=\mathrm{NO}_{2} \mathrm{OROO}_{2} \\ & \mathbf{D}=\mathrm{O}_{2} \mathrm{OR} \mathrm{NO} \end{aligned}$	[1] [1] [1] [1]	[4]
(ii)	any Group I carbonate OR ammonium carbonate	[1]	[1]
			[12]
2 (a) (i)	$\frac{27.30}{1000} \times 0.020=5.46 \times 10^{-4}(\mathrm{~mol})$	[1]	[1]
(ii)	(i) $\times 6=3.28 \times 10^{-3}(\mathrm{~mol})$	[1]	[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9701	22

Question	Answer	Mark	Total
(iii)	(ii) $\times \frac{250}{25.00}=3.28 \times 10^{-2}(\mathrm{~mol})$	[1]	[1]
(iv)	$\begin{aligned} & M_{\mathrm{r}} \text { of } \mathrm{FeCO}_{3}=55.8+12.0+3(16.0)=\mathbf{1 1 5 . 8} \\ & \text { (iii) } \times M_{\mathrm{r}}\left(\mathrm{FeCO}_{3}\right)=3.79 \mathrm{~g} \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(v)	$\frac{\text { (iv) }}{5.00} \times 100 \%=75.9 \%$	[1]	[1]
(b) (i)	$\begin{aligned} & 2 \mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Sn}^{4+} \\ & \text { species } \\ & \text { balancing } \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(ii)	$\mathbf{S n C l}_{\mathbf{2}}(\mathbf{a q})+\mathbf{2 H g C l} l_{2}(\mathrm{aq}) \rightarrow \mathrm{SnCl}_{4}(\mathbf{a q})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathbf{s})$ SnCl_{2} AND 2 state symbols	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
			[10]
3 (a) (i)	three bonding pairs lone pair AND octet shape $=$ (trigonal) pyramidal	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	[3]

Question		Answer	Mark
(ii)	Total		
(b) (igma(σ) bond	forward and backward reactions occurring at same rate OR the rate of forward and backward reactions are equal	[1]	
(ii)	M1 = decreased yield of products/less products formed / ora M2 $=$ left-hand side has fewer moles of gas OR equilibrium shifts to the left	[2]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9701	22

Question				
(c) Answer				

Question	Answer	Mark	Total
(d) (i)	nucleophilic addition	[1]	[1]
(ii)	correct dipole on carbonyl curly arrow from lone pair on CN^{-}AND from $\mathrm{C}=\mathrm{O}$ to O correct intermediate curly arrow from lone pair on O^{-}to H^{+} correct product	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	[5]
			[17]
4 (a) (i)	$\underline{C}_{4} \underline{H}_{10}$	[1]	[1]
(ii)	$\underline{C}_{4} \underline{H}_{9}$	[1]	[1]
(iii)		[1]	[1]
(b)	$\mathrm{C}_{8} \mathrm{H}_{18}+12 \frac{1}{2} \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$	[1]	[1]
(c)	sulfur dioxide would be produced on combustion (which contributes to) acid rain	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9701	22

Question	Answer	Mark	Total
(d)	M1 = H has more/greater/stronger van der Waals'/intermolecular forces than $\mathbf{G} /$ ora M2 = (because) \mathbf{H} has more electrons (than \mathbf{G}) M3 = J has hydrogen bonding (between molecules) M4 = strong(er)/great(er) forces require AND high/more energy to overcome	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	[4]
(e)	$\mathrm{NaOH}(\mathrm{aq})$	[1]	[1]
			[11]
5 (a) (i)	Q S T	$[1]$ $[1]$ [1] [1]	[4]
(ii)	pent-3-en(e)-2-one OR 3-penten-2-one	[1]	[1]
(iii)	red/orange/yellow precipitate/solid	[1]	[1]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9701	22

Question	Answer	Mark	Total
(b)	This question was discounted. M1 = decolourises bromine / 1500-1600 $\mathrm{cm}^{-1}=$ alkene M2 $=$ absorption at $1700 \mathrm{~cm}^{-1}$ is $\mathrm{C}=\mathrm{O}$ AND (very) broad absorption at $2500-3000 \mathrm{~cm}^{-1}$ is $\mathrm{O}-\mathrm{H}=$ carboxylic acid M3 = no cis-trans so terminal alkene OR chiral so contains a carbon atom with 4 different groups attached	[1] [1] [1] [1]	[4]
			[10]

