

JUNE 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9701/4

CHEMISTRY (STRUCTURED QUESTIONS (A2 CORE))

Page 1	Mark Scheme	Syllabus	
<u> </u>	A Level Examinations - June 2002	9701	4

1 (a)
$$K_w = [H'][OH']$$
 (or $[H_3O'][OH']$) [1]

(b)
$$[H^+] = K_w/[OH^-] = 1 \times 10^{-14}/0.2 \ (= 5 \times 10^{-14} \text{ mol dm}^{-3})$$
 [1]

$$\therefore pH = 13.3$$
 [1]

(c) NH₃ is a weak base or incompletely ionised [or NaOH is strong base] [1] [or an equation showing the equilibrium over to the NH₃ + H₂O side]

(f)
$$NH_3 + H^+ \longrightarrow NH_4^+$$
 [1] $[or NH_3 + HCl \ or \ H_2SO_4 \ etc]$

$$NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$$
 [1] [or $NH_4Cl + NaOH$ etc]

[At least one of the above equations should be shown. Allow a verbal equivalent for the other equation. Correct verbal equivalents for both equations are still worth [1] mark only. Any incorrect equation negates the mark for a correct one, but ignore "neutral" equations like NH₂Cl \longrightarrow NH₄ $^+$ + Cl]

2 total: 10

1

2

1

Page 2	Mark Scheme	Syllabus	Paper
	A Level Examinations – June 2002	9701	4

2 (a)
mix (a solution of) 4-nitrophenyl ethanoate with (a solution of) NaOH
[do NOT allow titration with NaOH]

either [ester] or volume of ester solution is known/fixed/stated

place in colorimeter (fitted with a suitable filter) (or spectrophotometer)

time the reaction / the appearance of yellow colour / the formation of product

[1]

measure the increase in absorbance over time or take time for a fixed

absorbance/colour to occur [1]

[allow take out samples at known times and titrate with standard acid for the last two marks]

(b) (i) from graph (see next page) [N.B. the graph on the question paper has not been reproduced correctly - the shapes of the curves are steeper at the start than the original. Allowance has been made for this in the rate ranges quoted below]

rate (A) =
$$0.001/18 - 0.001/26 = 3.8 - 5.5 \times 10^{-5} \text{ mol dm}^{-3} \text{ min}^{-1}$$

 $[or 6.3 - 9.0 \times 10^{-7} \text{ mol dm}^{-3} \text{ sec}^{-1}]$ [1]

rate (B) =
$$0.001/7 - 0.001/12 = 8.3 - 14.3 \times 10^{-5} \text{ mol dm}^{-3} \text{ min}^{-1}$$

[or $1.38 - 2.4 \times 10^{-7} \text{ mol dm}^{-3} \text{ sec}^{-1}$] [1]

correct units for either rate u/c [1]

(ii) order with respect to
$$[OH] = 1$$
 $u/c[1]$

(vi)
$$k = \text{rate}/([OH][ester]) = 4 \times 10^{-5}/(0.2 \times 1 \times 10^{-3})$$

= $0.2 \pm 0.05 \quad \text{mo}\Gamma^1 \text{ dm}^3 \text{ min}^{-1} [1] + [1] \text{units}$
{or 0.0033 \quad \text{mo}\Gamma^1 \text{ dm}^3 \text{ sec}^{-1} [1] + [1]}

[allow ecf from part (i) for value of the rate constant and part (v) for rate equation. Units mark is u c]

9

5 max 4

Page 3	Mark Scheme	Syllabus	Paper
	A Level Examinations – June 2002	9701	4

2. Graph for part (b)

3 (a)
$$Ca(NO_3)_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$$
 [or doubled] [1]

(b) stabilities increase down the group [or comparison of two Gp II nitrates][1]

because as the ions [NOT atoms]get bigger/have more shells/have smaller charge density u/c [1]

there is less polarisation of the nitrate ion/NO₃7anion u/c [1]

(c) (i)
$$MNO_3 \longrightarrow MNO_2 + \frac{1}{2}O_2$$
 [or doubled, or specific $Gp \ 1$ nitrate] [1]

(ii) 100g loses 10.85g of oxygen, this is $10.85/16 \approx 0.678$ moles of O or 0.339 moles of O₂ per 100g [1]

∴ 0.678 mol of MNO₃ has a mass of 100g

 \therefore 1.0 mol of MNO₃ has a mass of 100/0.678 = 147.5 g

since
$$NO_3 = 62$$
, $M = 147.5 - 62 = 85.3$ [85 - 85.5]

3

3

Page 4	Mark Scheme	Syllabus	Paper
	A Level Examinations – June 2002	9701	4

- 4 (a) $[1s^2 2s^2 2p^6 3s^2 3p^6]$ 3d⁵ [1]
 - (b) (i) E^* values: Cl_2/Cl_1^* 1.36(V) Br_2/Br_1^* 1.07(V) I_2/I_1^* 0.54(V) [1] $[E^*$ values could be read from the answers in (c)]

(Therefore) the halogens are less oxidising from Cl to I u/c [1]

(ii) E^9 values: Cr^{3+}/Cr^{2-} -0.41V Fe^{3+}/Fe^{2+} 0.77V Co^{3+}/Co^{2+} 1.82V [1] [E* values could be read from the answers in (c). Allow -0.74 for Cr^{3+} and -0.04 for Fe^{3+}]

(Therefore) the 3+ ions become more oxidising from Cr^{3+} to Co^{3-} u/c [1] 4 max 3

(ii)
$$2\text{Co}^{3+} + 2\text{Br}^{2} \longrightarrow 2\text{Co}^{2-} + \text{Br}_{2}$$
 [1]
 $E^{9} = 1.82 - 1.07 = 0.75\text{V}$ [1]

(iii)
$$2Cr^{2-} + I_2 \longrightarrow 2Cr^{3-} + 2\Gamma$$
 [1]
 $E^{\bullet} = 0.54 - (-0.41) = 0.95V$ [1]
 5 max 4
total: 8

5 (a) amide [NOT peptide] [1]

phenol [NOT hydroxy or alcohol] [1] [ignore, i.e. do not allow, benzene ring]

- (ii) CH₃CONH- [or Na salt = must include charges][1]
- (iii) $(CH_3CO_2^-) + NH_2 O^-$ [or Na salt must include charges][1]
- (c) (i) $X = CH_3COC1$ or $(CH_3CO)_2O$ [or names. NOT ester] [1]
 - (ii) PCl₅ or PCl₃ or SOCl₂ [or names] [1] [if the anhydride is used, allow P_2O_5 , AlPO₃, $CH_2 = C = O$, PCl₅ then $+ CH_3CO_3Na$ or any other valid method of obtaining anhydrides from acids] [if X =ester then allow ecf for $C_2H_3OH +$ conc H_2SO_4]

2

2

1

Page 5	Mark Scheme	Syllabus	Paper
<u>-</u> .	A Level Examinations – June 2002	9701	4

- 6 (a) (i) All AlClyFe/FeClyI2 [(aq), water or light negates this mark] [1]
 - (ii) light/hf/uv or heat [(aq) or water negates this mark] [1]
 - (b) (i) A does not react, because the Cl-ring bond is strong/short or Cl is more closely bonded or Cl electrons delocalised into the ring [1]

(ii)
$$CH_2C1$$
 CH_2OH $+ OH$ \longrightarrow $Or NaOH$ $+ CI^* (no ecf) [1]$

2 total: 4

2

$$\gamma$$
 (a) $\mathbf{Y} =$ NO₂

reagents for I: conc. HNO₃ + H₂SO₄ [(aq) negates] [1] [e.c.f.: allow a correct reagent corresponding to the structure of Y.

e.g. if Y = chlorobenzene, allow $Cl_2 + Fe$ etc]

reagents for II: tin/Sn or iron/Fe [NOT Zn] + (conc.)HCl
or LiAlH₄ [NOT NaBH₄] or H₂ + Ni [NOT Pt] [1]

[e.c.f.: allow a correct reagent corresponding to the structure of Y. e.g. if Y = chlorobensene, allow NaNH₂ (NOT NH₂)]

conditions for I: $35^{\circ}\text{C} < T < 60^{\circ}\text{C}$ {cond. on suitable reagent][1] [e.c.f.: allow the correct conditions corresponding to the structure of Y. e.g. heat]

Page 6	Mark Scheme	Syllabus	Рарег	
	A Level Examinations – June 2002	9701	4	

(b) (i)
$$C_6H_5NH_2 + H^{\dagger}/HCVH_2O \longrightarrow C_6H_5NH_3^{\dagger} [+CI/OH]$$
 [1]

[product must show ionic N^*]

(c) (i)
$$HNO_2$$
 or nitrous (nitric(III)) acid or $NaNO_2 + HCl$ [1]

$$0^{\circ}C < T < 10^{\circ}C$$
 [1]

(ii) NaOH (aq) or dilute or in solution (or in words) [NOT NH₃(aq)] [1]

(iii)
$$N=N-OH$$
 [1]

fCH; and OH have to be adjacent, but allow any orientation of N=N w.r.t. OH]

total: 11

3

No circle in benzene ring: deduct [1] for the whole paper. Sticks rather than C-H bonds: deduct [1] for the whole paper.