CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 9701/01
CHEMISTRY
Paper (Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	1

Question Number	Key	Question Number	Key
1	A	21	B
2	B	22	D
3	D	23	B
4	C	24	B
5	D	25	D
6	C	26	A
7	D	27	C
8	A	28	D
9	C	29	C
10	C	30	D
11	A	31	C
12	D	32	A
13	C	33	A
14	C	34	C
15	D	35	B
16	D	36	C
17	C	37	B
18	C	38	B
19	D	39	C
20	D	40	B

TOTAL 40

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 60
SYLLABUS/COMPONENT: 9701/02
CHEMISTRY
Theory 1 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

1 (a) Atoms which have the same number of protons (or same element) but different numbers of neutrons (1)
(b) (i) ${ }^{35} \mathrm{Cl}$ (1)
(ii) $\mathrm{H}^{37} \mathrm{Cl}$ (1)
(c) $\quad \mathrm{HCl}$ line at 36 has rel. abundance of 90

These show ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ in ratio $3: 1$ (1)
[or use of 35 and 37]
(d) Mean of the two isotopes $\frac{3 \times 35+1 \times 37}{4}=35.5$ (1)

2 (a) (i) That the volume of the gas molecules is negligible compared to the volume of gas (1)
(ii) That there are no intermolecular forces OR collisions of the molecules are perfectly elastic Particles are in constant motion, losing no energy on collision (1) any two [2]
(b) $\quad 6.02 \times 10^{23} \quad$ (1)
(c) (i) $r=\underline{0.192} \mathrm{~nm}$ (1) Assume most candidates will work in dm^{3}

$$
v=\frac{4}{3} \times 3.14 \times\left(1.92 \times 10^{-9}\right)^{3}=2.96 \times 10^{-26} \mathrm{dm}^{3}\left(2.96 \times 10^{-29} \mathrm{~m}^{3}\right)(1)
$$

(ii) $2.96 \times 10^{-26} \times \underline{6.02 \times 10^{23}}(1)=1.78 \times 10^{-2} \mathrm{dm}^{3}\left(1.78 \times 10^{-5} \mathrm{~m}^{3}\right)(1)$
(iii) $24 \mathrm{dm}^{3}\left(0.024 \mathrm{~m}^{3}\right)(1)$
(iv) $\frac{1.78 \times 10^{-2} \times 10^{2}}{24}=0.074 \%$
(v) Some statement which connects with (a) (i) above (1) max [5]
(d) - hot metals will react with oxygen in air (or nitrogen)

- to form oxides/will burn out/to a powder
- argon will not react
- at high temperatures O_{2} and N_{2} in air will react to give NO_{x}

NOT expansion of gases on heating any two

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

3
(a) $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightharpoons 2 \mathrm{NH}_{3}$
exothermic
[2]
(b) Pr. 50 atm upwards; Temp $400-600^{\circ} \mathrm{C}$; catalyst of iron (1 each, conditions stated)
(c) Too high a temp and equilibrium favours LHS, less ammonia at equilibrium (1)
Too low a temp, rate too slow/not enough molecules have $\mathrm{E}_{\text {act }}$ (1)
(d) (i)

$$
\begin{equation*}
K_{\mathrm{p}}=\frac{\mathrm{PNH}_{3}^{2}}{\mathrm{PN}_{2} \times \mathrm{PH}_{2}^{3}} \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
K_{p} & =\frac{37.2^{2}}{44.8 \times 105.6^{3}} \tag{1}\\
& =2.62 \times 10^{-5} \mathrm{~atm}^{-2}
\end{align*}
$$

(1) calculation and units
(e) Excess (hence uncontrolled) nitrates leach out of fields into streams, seas (1)
Bacteria or algae grow fast/use oxygen/clog up water (1)
Balance destroyed/fish unable to live
Process called eutrification (1)

4 (a) (i)

(ii)

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

(iii)

(in data booklet)
(iv)

(c) (i) $\mathrm{Na}_{2} \mathrm{O} \quad \mathrm{MgO} \quad \mathrm{Al}_{2} \mathrm{O}_{3} \quad \mathrm{P}_{2} \mathrm{O}_{5}\left(\right.$ or $\mathrm{P}_{4} \mathrm{O}_{10}$ or $\left.\mathrm{P}_{2} \mathrm{O}_{3}\right) \mathrm{SO}_{2}$ or SO_{3}
(ii) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ (1)
(iii) $2 \mathrm{NaOH}+\mathrm{SO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$
or NaHSO_{3}
OR $2 \mathrm{NaOH}+\mathrm{SO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ (1) NaHSO_{4}
[Total: 9]

5 (a)

(b) Alkane (1)
(c) (i) Not biodegradable/does not decompose/unreactive Not affected by enzymes
Not attacked by aqueous or polar reagents found in tissues Insoluble/does not absorb water/cotton absorbs water NOT is stronger than cotton [equivalent worthy points; they may overlap - but allow - max 2]

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

(ii) Alkanes react with oxygen (combustion)

Not possible in muscle (1)
also react with halogens/in U.V. light muscle is internal and no halogens
[ecf for alkene answers in (b)]
[Total: 6]

6 (a)
$\frac{66.7}{12}$
$\frac{11.1}{1}$
22.2
$=5.5=11.1=1.3875$
Divide by 1.3875
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \quad$ (1) $\quad 48+8+16=72$ hence $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
[2]
(b) (i) orange ppt (1) red to yellow/crystals or solid
(ii) ketone (1)
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ or butanone (1)
(c) (i) $\mathrm{NaBH}_{4} \quad$ allow $\mathrm{NaAlH}_{4}\left(\mathrm{Li} \mathrm{Al} \mathrm{H} H_{4}\right)$ (1) $\quad \mathrm{H}_{2} / \mathrm{Ni}$ or Pt
(ii) secondary alcohol
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$
(1)
[Allow ecf marks if (b) (iii) is butanal]
[Total: 8]

7 (a) (i) e.g.

$\mathrm{H}-\mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$ any three
(ii) $\mathrm{RCO}_{2} \mathrm{R}^{\prime}+\mathrm{NaOH} \rightarrow \mathrm{RCO}_{2} \mathrm{Na}$ (1) +R OH (1) $\rightarrow \mathrm{RCO}_{2} \mathrm{H}+\mathrm{R}$ 'OH (1) only
(b) (i) * volatile, or liquids (1) immiscible, with water (1) smell (1)
and (ii) any two
(c) (i) solvents, perfumes, flavourings, lotions, olive or palm oils any two
and (ii) To make soap, to make Terylene NOT polyesters
[Maximum Total: 8]

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9701/03

 CHEMISTRYPractical 1

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	3

1 (a) Table 1.1

Do not penalise times that have been recorded to 1 or 2 decimal places.
The Examiner is to inspect the candidate's calculation of $\frac{1000}{\text { time }}$.
If the candidate has recorded the ratio to more (or less) than 1 decimal place there is no need to check the calculation for experiments 1,3 and 5 unless $\frac{1000}{\text { time }}$ is an integer.

If all 6 calculations are recorded to 1 decimal place the Examiner is to check the calculation for experiments 1,3 and 5. (X.X5 may be rounded up or down.)

Give one mark if all three are correctly calculated.
The Examiner is to calculate volume of FA $1 \times$ Time to the nearest second for experiments 1,3 and 5.

If the candidate fails to complete experiments 1,3 and 5 or states that a value is inaccurate/unreliable; work with the closest available value.

Award accuracy marks as follows:

List the three Vt values in decreasing numerical order.
The \% difference will always be assessed on the top or middle value. Where all three values are not within 10% of the largest value, identify the closest pair,
e.g. 1800$\} \quad$ Closest pair - 2 within 10%

1760 \}
1590
Take the difference between 1590 and 1800, the further of the 10% pair.
The difference (210) is calculated as a \% of 1800, the greater of the 10\% pair.
$\underline{210} \times 100=11.7 \%$
1 within 20\%
1800
e.g. 21400

1290 Closest pair - 2 within 10%
1250
Take the difference between 1400 and 1250, the further of the 10% pair.
The difference (150) is calculated as a \% of 1290, the greater of the 10\% pair.

$$
\underline{150} \times 100=11.6 \%
$$

1 within 20\%
1290

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	3

Award marks:

Mark

volume of FA $1 \times$ Time
If all three values are within 10% of the largest
5
If all three values are within 15% of the largest or
Two values are within 10% of the larger of the closest pair and the spread of all three values is $\leq 20 \%$ of the larger of the closest pair

If all three values are within 20% of the largest or Two values are within 15% of the larger of the closest pair and the spread of all three values is $\leq 25 \%$ of the larger of the closest pair
or
Two values are within 10% of the larger of the closest pair and the spread of all three values is $\leq 40 \%$ of the larger of the closest pair

If all three values are within 25% of the largest or
Two values are within 20% of the larger of the closest pair and the spread of all three values is $\leq 30 \%$ of the larger of the closest pair
or
Two values are within 15% of the larger of the closest pair and the spread of all three values is $\leq 40 \%$ of the larger of the closest pair
or
Two values are within 10% of the larger of the closest pair and the spread of all three values is $\leq 50 \%$ of the larger of the closest pair

If all three values are within 30% of the largest or
Two values are within 25% of the larger of the closest pair and the spread of all three values is $\leq 35 \%$ of the larger of the closest pair
or
Two values are within 20% of the larger of the closest pair and the spread of all three values is $\leq 40 \%$ of the larger of the closest pair
or
Two values are within 15% of the larger of the closest pair and the spread of all three values is $\leq 60 \%$ of the larger of the closest pair
or
Two values are within 10% of the larger of the closest pair and the spread of all three values is $\leq 80 \%$ of the larger of the closest pair

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	3

1

0

If all three values are within 35% of the largest or
Two values are within 30% of the larger of the closest pair and the spread of all three values is $\leq 50 \%$ of the larger of the closest pair
or
Two values are within 25% of the larger of the closest pair and the spread of all three values is $\leq 60 \%$ of the larger of the closest pair
or
Two values are within 20% of the larger of the closest pair and the spread of all three values is $\leq 70 \%$ of the larger of the closest pair
or
Two values are within15\% of the larger of the closest pair and the spread of all three values is $\leq 80 \%$ of the larger of the closest pair
or
Any two values are within 10\% of the larger
Outside the above ranges
(b) Give one mark for any answer that explains that: Take care not to miss this mark
the unit of rate is "per second" or short time = fast rate, long time = slow rate
or

$$
\text { Rate } \propto \frac{1}{\text { time }}
$$

In less clear answers - reward the idea of 'division by time'.
(c) Graph

Give one mark for plotting with a suitable scale on the y axis.
Points must be plotted over more than $1 / 2$ of the y axis.
(Place a tick or cross at the top of the y axis and mark in the margin)
Give two marks if the points for experiment 1, experiment 3 and experiment 5 are plotted correctly.
Points must be precisely placed on the appropriate vertical line and be in the correct square and within $1 / 2$ a square of the Examiner plotted point.
If the candidate has not carried out the experiment or not plotted the point, check an adjacent point. (Two points correctly plotted earns one mark) (Indicate correct plotting with a small tick or cross below each appropriate volume on the y axis and mark in the margin)

Give one mark for any straight line, drawn with a ruler, which relates to the results.
Give one mark for a smooth curve or straight line passing precisely through the origin.
(Place ticks or crosses against the line and marks in the margin)

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	3

(d) If a straight line has been drawn (that has reasonable correlation to the points plotted but does not have to go through the origin) or (There is a statement - that fits the evidence - about what graph should have been drawn)

Give one mark for
rate of reaction is directly proportional to concentration of (sodium thiosulphate)
or
explanation such as doubling concentration, doubles rate or $1^{\text {st }}$ order (wrt sodium thiosulphate)

If a smooth curve has been drawn (that has reasonable correlation to the points plotted but does not have to go through the origin)

Give one mark for
concentration (of sodium thiosulphate) is related in some way to but is not directly proportional. If the candidate states that there is some proportional relationship they must also say it is not directly proportional to get this mark.

Do NOT give this mark if the line drawn is not justified by the results of the experiments. If NO LINE has been drawn and there is a scatter of points on the graph.

Give one mark for
there is no correlation or no proportionality
or
is not $1^{\text {St }}$ order (wrt sodium thiosulphate)
(e) Give one mark for

Volume (of FA 1) becomes a measure of concentration
or To keep the depth of solution constant or Same amount of sulphur produced
or Constant opacity or $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ only variable

Page 5 Mark Scheme	Syllabus	Paper	
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	3

2 FA 3 is a mixture of two solids, FA 4 which is soluble in water contains $\mathrm{NH}_{4}{ }^{+}$ and I^{\prime}, FA 5 which is insoluble in water contains Mg^{2+} and $\mathrm{CO}_{3}{ }^{2-}$.

Tip the solid FA 3 into a boiling tube, add distilled water until the tube is half full, stopper and shake for about 30 seconds. Filter the mixture and retain both the filtrate and the residue in the filter paper.

Tests on the Filtrate (FA 4)

Tests on the Residue (FA 5)

(d)Transfer the solid residue from the filter paper to a boiling-tube and add a minimum quantity of dilute hydrochloric acid to dissolve the solid.	Effervescence, fizzing, carbon dioxide or gas turning lime water milky one mark
Divide the solution into two parts and use one part for each of the following tests.	1 To one part add aqueous sodium hydroxide. To the other part add dilute aqueous ammonia. White precipitate, insoluble in excess one mark

Page 6	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	3

Give one mark for correctly identifying the ions in FA 4 as $\mathbf{N H}_{4}{ }^{+}$and I^{-}.
(Do not give this mark if additional ions are included)
Give one mark for a deduction about one of the ions stated to be present providing the deduction fits the recorded observation (Incorrect ions may gain marks here - ecf)

If there is a string of ions, including $\mathrm{NH}_{4}{ }^{+}$and I , the deduction must be for $\mathrm{NH}_{4}{ }^{+}$ or I .

Give one mark for correctly identifying the ions in $\mathbf{F A} \mathbf{5}$ as $\mathbf{M g}^{\mathbf{2 +}}$ and $\mathbf{C O}_{3}{ }^{\mathbf{2}}$.
Give one mark for a correct deduction to support the identification of one of the ions stated to be present (ecf)
[Where the Identity of ions in FA 4 have clearly been recorded as FA 5 or vice versa the deduction mark may be awarded but not the mark for the identity of the ions]

Cancel any mark in excess of 10.

Total for Question 2 is 10 and for the Paper 25

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04 CHEMISTRY
 Theory 2 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	4

1 (a) The EMF of a cell made up of the test electrode and a standard hydrogen electrode.

EMF measured under standard conditions of T, P and concentration
(b) (i) $E_{\text {left }}=E_{\text {right }}-E_{\text {cell }}=0.34-0.76=\mathbf{- 0 . 4 2}$ (V)
(ii) \longrightarrow (arrow from left to right)
(iii) I pink/red solid/ppt or copper will be formed or blue solution fades or M dissolves/corrodes
$\mathrm{Cu}^{2+}+\mathrm{M} \rightarrow \mathrm{Cu}+\mathrm{M}^{2+}$
II hydrogen/gas evolved or M dissolves (do not allow "M dissolves" for [2] marks in both I and II)
$\mathrm{M}+2 \mathrm{H}^{+} \rightarrow \mathrm{M}^{2+}+\mathrm{H}_{2}$
6
(c) (i) polarity of d. c. source: $\quad \ominus$ is on the left, \oplus is on the right electrolyte is $\mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{CuSO}_{4} / \mathrm{CuCl}_{2} / \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ etc. or name
(ii) moles of $\mathrm{Cu}=0.5 / 63.5 \quad=7.87 \times 10^{-3}$
moles of $e^{-}=2 \times 7.87 \times 10^{-3}=1.57 \times 10^{-2}$
no. of coulombs $=96500 \times 1.57 \times 10^{-2}=1517$ (C)
time $=1520 / 0.5=5034$ seconds $=50.7 \mathrm{~min}$

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	4

2
(a)
(i) $K_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}^{2-}\right]$
[1] units: $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
[1] ecf
(ii) $\left[\mathrm{Ba}^{2+}\right]=\sqrt{ }\left(1.3 \times 10^{-10}\right)=1.14 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(iii) BaCO_{3} can react with/dissolve in the acid/ HCl in the stomach
(or unbalanced equation showing, e.g. $\mathrm{BaCO}_{3}+\mathrm{HCl} \rightarrow$)
(b)
(i) $K_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
[1] units: $\mathrm{mol}^{3} \mathrm{dm}^{-9}$
[1] ecf
(ii) calling $\left[\mathrm{Mg}^{2+}\right]=x$, then $K_{\text {sp }}=x(2 x)^{2}=4 x^{3} \Rightarrow x=\sqrt[3]{\left(K_{\text {sp }} / 4\right)}$
$\therefore\left[\mathrm{Mg}^{2+}\right]=\sqrt[3]{ }\left(2 \times 10^{-11} / 4\right)=1.7 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ allow ecf for use of $\sqrt[3]{ }$
(iii) $\%$ left $=100 \times\left(1.7 \times 10^{-4}\right) /(0.054)=0.32 \%$
$\therefore \%$ extracted $=99.7$ (\%)

5
(c) (i) $\Delta \mathrm{H}_{\mathrm{r}}=\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left(\mathrm{Mg}^{2+}\right)+2 \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{f}}(\mathrm{C} I)-\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}\left(\mathrm{MgCl}_{2}\right)$

$$
\begin{align*}
& =-467+2(-167)-(-641) \\
& =-160\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1}
\end{align*}
$$

(ii) highly exothermic enthalpy change of solution or $\Delta \mathrm{H}_{\text {sol }}$ is very negative
(d) mention of hydration enthalpy and lattice enthalpy
hydration enthalpy decreases more than does lattice enthalpy
or
enthalpy change of solution or $\Delta \mathrm{H}_{\text {sol }}$ becomes less negative/more positive

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	4

3 (a) (i) simple/discrete covalent/molecular
(ii) giant/macro covalent/molecular (NOT atomic)
(iii) (giant) ionic
a general statement that strong attraction means high m.pt. and weak means low
(b) (i) $\mathrm{CO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaHCO}_{3}$
(this mark is negated if candidate states that SiO_{2} dissolves/reacts)

$$
\begin{align*}
& \mathrm{SnO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SnO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& \text { or } \mathrm{SnO}_{2}+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{Sn}(\mathrm{OH})_{4} \text { etc } \tag{1}
\end{align*}
$$

(if neither of the above marks can be awarded, allow CO_{2} and SnO_{2} dissolve/react but SiO_{2} does not, for [1])
(ii) CO_{2} and SiO_{2} - no reaction

$$
\begin{equation*}
\mathrm{SnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{SnCl}_{4}\left(\text { or } \mathrm{Sn}^{4+}+4 \mathrm{C} I\right)+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

4
(c) $\mathrm{PbO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{PbCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
$\mathrm{E}_{\text {cell }}=1.47-1.36$
$=\mathbf{0 . 1 1 (V) [f o r ~} 1 \mathrm{M} \mathrm{HCl}]$
or

$$
\begin{equation*}
\mathrm{Pb}^{4+}+2 \mathrm{C} t \rightarrow \mathrm{~Pb}^{2+}+\mathrm{Cl}_{2} \tag{1}
\end{equation*}
$$

$$
E_{\text {cell }}=1.69--1.36
$$

$$
\begin{equation*}
=0.33(\mathrm{~V})[\text { for } 1 \mathrm{M} \mathrm{HCl}] \tag{1}
\end{equation*}
$$

Total: 10, max 9

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	4

4 (
(a) $\mathrm{Cl}_{2}+$ light/heat (aq negates)
(b) $\mathrm{Cl}_{2}+\mathrm{AlCl}_{3} / \mathrm{FeCl}_{3} / \mathrm{Fe}$ etc. (aq negates)
(c)

(d) $\quad \mathrm{NaOH}+\mathrm{I}_{2}(+\mathrm{aq}) \quad\left(\right.$ or $\left.\mathrm{I}^{-}+\mathrm{OC} t+\mathrm{aq}\right)$
[1]
C: (pale) yellow ppt.
D: no reaction
(both)
[1]
(e) mass of $C N$ needed $=0.03 \times 60=1.8 \mathrm{~g}$
$\mathrm{M}_{\mathrm{r}}=154.5, \therefore$ amount $=1.8 / 154.5 \mathbf{= 0 . 0 1 1 7}$ (mol) (allow 0.012) $\operatorname{ecf}[1]$
(f) (i) increasing ease: $\mathrm{H}<\mathrm{D}<\mathrm{G}$
(ii) chlorine on the aryl ring is very inert or strong $\mathrm{C}-\mathrm{Cl}$ bond or overlap between Cl lone pair and π bond on ring (OWTTE)
chlorine on $\mathrm{C}=\mathrm{O}$ is reactive because of highly $\delta+$ carbon atom bonded to electronegative O and Cl (OWTTE)

Page 5	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	4

5 (a) (i) $\mathrm{SOCl}_{2} / \mathrm{PCl}_{5} / \mathrm{PCl}_{3} / \mathrm{P}+\mathrm{Cl}_{2}$ (aq negates)
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{+}\left(\right.$or $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}\right)+\mathrm{H}_{2} \mathrm{O}$
(iii) $J=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCOCH}_{3}$
$\mathbf{K}=\mathrm{CH}_{3} \mathrm{CONH}_{2}$

4
(b) (i) condensation
(ii) $\mathrm{ClCOCH}_{2} \mathrm{CH}_{2} \mathrm{COCl}+2 \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \rightarrow$
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\left(+\mathrm{H}_{2} \mathrm{O}\right)$
(c) (i) polyamide or nylon (allow condensation) [NOT peptide or protein] [1]
(ii)
 [1] + [1]

6 (a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \quad 4 s^{2} 3 d^{2} \quad$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{2}$ (or vice versa)
(ii) two of $\mathrm{TiCl}_{2}, \mathrm{TiCl}_{3}, \mathrm{TiCl}_{4}$
(b) (i) blue solution is formed
containing $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(ii) NH_{3} replaces $\mathrm{H}_{2} \mathrm{O}$ ligands or forms $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (or $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
which is deep blue/purple

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 30
SYLLABUS/COMPONENT: 9701/05
CHEMISTRY
Practical 2

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	5

Question 1

(a) Titration Tables 1.1 and 1.2

Give one mark if
all final burette readings in both tables are to 2 decimal places, in the correct places in both tables and the subtraction in Table 1.1 is correct. titrations in Table 1.2 that are labelled Rough do not need to be to 2 d.p. and subtraction need not be checked unless the value has been included in calculating the average.

Titration Table 1.1

Give one mark if

A candidate recorded volume between $45.00 \mathrm{~cm}^{3}$ and $45.50 \mathrm{~cm}^{3}$ has been diluted.

Titration Table 1.2

Give one mark if

Two (uncorrected) titres are within $0.10 \mathrm{~cm}^{3}$
Give one mark if
a suitable average has been selected. (Do not give this mark if there is an error in subtraction in Table 1.2)

Accuracy

From the Supervisor's results calculate, to $\mathbf{2}$ decimal places,

Volume of FB 1 diluted x Titre

 45.00Record this value as a ringed total below Table 1.2.

Calculate the same ratio for each candidate and compare with the Supervisor's value.
Award accuracy marks as shown in the table below.
The spread penalty may have to be applied using the table below.

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	5

Accuracy Marks	
Mark	Difference from Supervisor
8	Up to 0.10
7	$0.10+$ to 0.15
6	$0.15+$ to 0.20
5	$0.20+$ to 0.30
4	$0.30+$ to 0.40
3	$0.40+$ to 0.60
2	$0.60+$ to 0.80
1	$0.80+$ to 1.00
0	Greater than 1.00

Spread Penalty	
Range used/cm	
$0.20+$ to 0.25	Deduction
$0.25+$ to 0.30	2
$0.30+$ to 0.35	3
$0.35+$ to 0.40	4
$0.40+$ to 0.50	5
$0.50+$ to 0.60	6
$0.60+$ to 0.80	7
Greater than 0.80	8

In all calculations, ignore evaluation errors if working is shown
(c) Give one mark for
100.0
248.2 or 0.403 or 0.4029

Do not give this mark if 32 is seen to be used instead of 32.1 for A_{r} of sulphur 0.403 without working gains this mark
(d) Give one mark for Answer to (c) x volume of FB 1 diluted 250
(e) Give two marks for

Answer to (d) x titre (1) $\times 1 / 2$ (1) 1000
(f) Give one mark for $\frac{25}{1000} \times 0.023$ or 0.000575
(g) Give one mark for
answer to (e) answer to (f)

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	5

(h) Give one mark for correctly calculating the oxidation numbers of

Chromium in $\mathrm{CrO}_{4}{ }^{2-}$	$(+) 6$
lodine in I^{-}	-1
lodine in 1_{2}	0

Give one mark for using the reacting quantities in (g) to show that $\mathrm{CrO}_{4}{ }^{2-} \equiv 1 \frac{1}{2} \mathrm{I}_{2} \equiv 3 \mathrm{e}^{-}$.

And that the oxidation number of +6 is reduced to +3 .

Total for Question 120

Question 2

ASSESSMENT OF PLANNING SKILLS

Plan
Give one mark for each of the following points.
Identify the method below that gives the best match - there may be cross-over.
(Record the letter of the point awarded in the text where given and tick the appropriate box in the margin)

Method	A Heat/Mass	B Heat/ Volume	C Acid/ Volume	D Acid/ Mass	E CuCO_{3} BackTitre	$\begin{gathered} \mathrm{F} \\ \mathrm{CO}_{2} \\ \text { Back- } \\ \text { Titre } \\ \hline \end{gathered}$	G CuO Back- Titre	H Residue method	$\begin{gathered} \mathrm{I} \\ \mathrm{CuCO}_{3} l \\ \mathrm{CuO} \\ \text { Titration } \end{gathered}$
a	Weighs sample	Weighs sample	Weighs sample	Weighs sample and acid	Weighs sample				
b	Heat	Heat	Placed in acid	Placed in acid	Known moles of acid measured	CO_{2} produced in suitable way	CO_{2} produced	Adds excess acid	Makes solution in a volumetric flask
C	Reweigh	$\begin{aligned} & \mathrm{CO}_{2} \\ & \text { collected } \end{aligned}$	CO_{2} collected	Reweigh	CuCO_{3} dissolved in excess acid	CO_{2} dissolved in excess alkali	CuO dissolved in excess acid	Filter/dry residue	Titrates with standard acid
d	Heat to constant mass	Volume of gas measured	Volume of gas measured	Mass of CO_{2} calculated	Excess of acid titrated	Excess of alkali titrated	Excess of acid titrated	Weighs residue	

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	5

Table of Results

Give three marks if table(s) show all measurements necessary
Deduct one mark for each measurement missing. (No negative marks)

The candidate must give all necessary readings: each relevant unit must be seen at least once.

Examiners must be satisfied that all practical readings needed for the candidate's method have been recorded.

Weighings must include:
Mass of empty container Mass of container + solid (Mass of container + residual solid) where appropriate etc.

Collection of gas must include:
An initial volume of gas
A final volume of gas

Titration results must include:
Initial burette readings
Final burette readings
Titre volume

Processing of Results

Give one mark for each of the following points. (Tick the appropriate box in the margin)

Mathematical expressions (using algebra or specimen values) must be included in the processing of results. Use must be made of the A_{r} values given in the paper and the GMV where appropriate.

Method	Mass/Volume methods	Back-Titre methods	Residue methods	$\underset{\text { titre }}{\mathrm{CuCO}_{3} / \mathrm{CuO}}$
e	Volume of mass of CO_{2} converted to moles	Initial moles of acid/alkali excess moles of acid/alkali gives moles of $\mathrm{CO}_{2} / \mathrm{CuO} / \mathrm{CuCO}_{3}$	Find mass of CuCO_{3} by subtraction	Moles of acid converted to moles of CuCO_{3}
f	Moles of CO_{2} converted to moles and mass of CuCO_{3}	Moles converted to mass of CuCO_{3}	$\%$ of CuCO_{3} calculated	Moles of CuCO_{3} converted to mass of CuCO_{3}
g	$\%$ of CuCO_{3} calculated	$\%$ of CuCO_{3} calculated		$\%$ of CuCO_{3} calculated

Page 5 Mark Scheme	Syllabus	Paper	
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	5

Plan Marks

Marks for the Plan (a-d) may be awarded from the Table(s) of Results or from the Processing of Results

Processing of Results Marks

Marks in the final section (e-g) may be found in and awarded from the Planning Section

Marks for the Table of Results

The three marks in this section can only be awarded in the Table of Results Section

Total for Question 2

CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 40
SYLLABUS/COMPONENT: 9701/06
CHEMISTRY
Options

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

Biochemistry

1. (a) Enzymes consist of biological catalysts

They have an active site, into which the substrate fits
Idea of 'lock and key' mechanism
Bond(s) in substrate are weakened
They are specific for a substrate
$\mathrm{E}+\mathrm{S} \rightarrow \mathrm{ES} \rightarrow \mathrm{E}+$ products
[max 5]
(b)

Axes
1 correct graph
3 correct graphs
Graphs to show $\mathrm{V}_{\text {max }}$ is proportional to enzyme units, and
K_{m} is constant

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

2. \mathbf{A} is ATP/adenosine triphosphate/adenine ribose triphosphate It is associated with energy changes

B is an amino acid/glutamic acid NOT aspartic acid
It is found in proteins

C is a phospholipid/phosphoglyceride
It is found in bilayers/membranes/stabilises colloidal systems

D is deoxyribose
It is found in DNA

E is glucose-6-phosphate
It is formed in glycolysis/at the start of the Krebs cycle/in metabolism/
activates glucose/inhibitor for glycolysis

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

Environmental Chemistry

3. (a) The high positive charge of the aluminium ions
causes the coordinated water molecules to lose a hydrogen ion to the soil solution/polarises $\mathrm{H}-\mathrm{O}$ bond.

Diagram or formula of aluminium ion produced
Accept $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$ or $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{OH}\right]^{+}$
(b) (i) anaerobic (reducing)
(ii) hydrogen ions are required to remove the oxide ions from the sulphate ions or
$\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HS}^{-}+\mathrm{OH}^{-}$
hence the water becomes more alkaline*
(iii) aluminium hydroxide is precipitated
accept equation + state symbol
thereby leaving the water more acidic*
(*1 mark for both of these stated)
(iv) $\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Allow $\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+}=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
or $\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+}=\mathrm{HCO}_{3}{ }^{-}$
(c) Organic matter from the wetlands will utilise dissolved oxygen to form carbon dioxide

This means that the water is making heavy demands on the available oxygen and the water can then be said to have a high BOD

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

4
(a) $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}(\mathrm{g})+\mathrm{O}^{*}(\mathrm{~g})$
$\mathrm{O}^{*}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{M}(\mathrm{g}) \rightarrow \mathrm{O}_{3}(\mathrm{~g})+\mathrm{M}^{*}(\mathrm{~g})$
M is an inert third body such as $N_{2}(g)$
$\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g})$
An equilibrium is therefore established which is $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
(b) $\quad \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl} \cdot(\mathrm{g})$
$\mathrm{Cl} \cdot+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{ClO} \cdot(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{ClO} \cdot(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cl} \cdot(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{C} \cdot \circ$ is therefore a catalyst
(c) $\mathrm{NO}_{2}(\mathrm{~g})$ can react with the $\mathrm{ClO} \cdot(\mathrm{g})$ to form ClONO_{2} and will therefore break the propagation cycle above.

This means $\mathrm{Cl} \cdot(\mathrm{g})$ is no longer regenerated and less ozone is destroyed

Page 5	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

Phase Equilibria

5. (a) (i) Graph plotted and lines drawn

Axes labelled
Areas - two metal + liquid areas

- liquid + solid areas
(ii) $140 \pm 4{ }^{\circ} \mathrm{C}$ and $40 \pm 3 \%$ tin
(b)

Shape of cooling curve to $140^{\circ} \mathrm{C}$ (ecf from candidate's graph)
Any two sections labelled correctly
(c) One of: solder; lead shot; bronzes; aluminobronzes

Page 6	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

6. (a) (i)

Injection and carrier gas
Column and oven
Detector and recorder
(ii) Adsorption/partition
(b) (i) Propanone, butanone, ethanol, pentan-3-one, propan-2-ol

5 correct $\Rightarrow 3$ marks; 4 correct $\Rightarrow 2$ marks; 3 correct $\Rightarrow 1$ mark
-1 for each of methanol, pentan-2-one or cyclohexanone (max 3)
(ii) $50-150^{\circ} \mathrm{C}$
(iii) Hydrophilic/polar

Since alcohol OH groups are more strongly adsorbed than ketones

Page 7	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

Spectroscopy
7. (a) Colour results from d-electrons absorbing energy as they move from lower to higher energy levels
d -orbitals are split due to repulsion/ligand field argument
by ligands of electrons in $d\left(x^{2}-y^{2}\right)$ and $d\left(z^{2}\right)$ orbitals
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ has vacant d-orbitals allowing promotion
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ has no vacant orbitals
(b) (i) $\pi \rightarrow \pi_{*}^{*}$
$n \rightarrow \pi^{*}$
$\mathrm{n} \rightarrow \sigma^{*}$
$\left.\begin{array}{l}\text { (ii) } n \rightarrow \sigma^{*} \\ \text { (iii) } \pi \rightarrow \pi^{*}\end{array}\right\}$ more than one absorption scores 0

Page 8	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

8. (a) From mass spectrum

Ratio of M : $\mathrm{M}+1$ peaks shows no. of carbons is

$$
\begin{align*}
& 16.5: 1.47=100: 1.1 \tag{1}\\
& n=\frac{1.47 \times 100}{16.5 \times 1.1}=8 \tag{1}
\end{align*}
$$

From ir spectrum

Peak at $3050-3400 \mathrm{~cm}^{-1}$ could be OH (or NH)
Not broad or rounded, suggest not OH
Peak at $1600-1680 \mathrm{~cm}^{-1}$ suggests $\mathrm{C}=\mathrm{O}$

From nmr spectrum
Compound contains 3 proton environments
Peak at 7.4δ - aromatic ring
Peak at $2.1 \delta-\mathrm{CH}_{3}$
Peak at 3.1δ which disappears in $\mathrm{D}_{2} \mathrm{O}$ - labile $\mathrm{H} / \mathrm{N}-\mathrm{H}$
(b) Functional groups - amide ($\mathrm{C}=\mathrm{O}, \mathrm{N}-\mathrm{H}$)

Suggests \mathbf{Q} is

NOT a disubstituted ring

Page 9	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

Transition Elements

9. (a) $\mathrm{Ni}+4 \mathrm{CO} \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}$
$\mathrm{Ni}(C O)_{4}$ is a liquid and is purified by distillation
$\mathrm{Ni}(\mathrm{CO})_{4} \rightarrow \mathrm{Ni}+4 \mathrm{CO}$
CO is recycled
(b) Use: Catalyst in the hydrogenation of vegetable oils to margarine

Reason: Heterogeneous catalyst - uses d-orbitals to complex
Any other viable use accepted, mark independent of property/reason
(c)

Trans

Trans

Cis

Octahedral
(2×1)

Cl

Cis
Square planar

Page 10	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	6

10. (a) Cu^{\prime} has d^{10} configuration/no gaps in upper orbitals
$C u^{11}$ has d^{9} configuration/has space for promotion of an electron
(b) (i) The formation of a higher and a lower oxidation state from an intermediate one/simultaneous oxidation and reduction
(ii) $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
$\mathrm{E}_{\text {cell }}=0.52-0.15=0.37 \mathrm{~V}$
(c) (i) $\mathrm{Cu}^{2+}+2 \mathrm{I}^{-} \rightarrow \quad \mathrm{CuI}+\quad 1 / 2 \mathrm{I}_{2}$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$
(ii) $\mathrm{CuCl}_{2}+2 \mathrm{HCl}+\mathrm{Cu} \rightarrow 2 \mathrm{H}\left[\mathrm{CuCl}_{2}\right]$ or similar

Blue Cu^{2+} to colourless/white Cu^{+}
$\mathrm{HCuCl}_{2} \rightarrow \mathrm{CuCl}+\mathrm{HCl}$
$M_{\mathrm{r}} \mathrm{CuCl}=99$, hence $\underline{35.5}=35.9 \%$ chlorine

