MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/02
Paper 2 (Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:			
	mark available	A	B	E	
Component 2	60	48	42	27	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 60
SYLLABUS/COMPONENT: 9701/02
CHEMISTRY
Paper 2 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper

1 (a) same proton no./atomic no./no. of protons
different mass no./nucleon no./no. of neutrons
(1)
(1)
[2]
(b)

	number of		
isotope	protons	neutrons	electrons
${ }^{56} \mathrm{Fe}$	$\mathbf{2 6}$	$\mathbf{3 0}$	$\mathbf{2 6}$
${ }^{59} \mathrm{Co}$	$\mathbf{2 7}$	$\mathbf{3 2}$	$\mathbf{2 7}$

(1)
(1)
(1)
give one mark for each correct column allow (1) if no column is correct but one row is correct
(c) (i) weighted mean/average mass
of an atom (not element)
compared with ${ }^{12} \mathrm{C}$
one atom of ${ }^{12} \mathrm{C}$ has a mass of exactly 12
[relative to $1 / 12{ }^{\text {th }}$ the mass of a ${ }^{12} \mathrm{C}$ atom would get 2]
or
mass of 1 mol of atoms
compared with ${ }^{12} \mathrm{C}$
1 mol of ${ }^{12} \mathrm{C}$ has a mass of 12 g
(ii) $A_{\mathrm{r}}=\frac{54 \times 5.84+56 \times 91.68+57 \times 2.17}{100}$

$$
\begin{equation*}
=\frac{5573.13}{100}=55.7 \text { to } 3 \mathrm{sf} \tag{1}
\end{equation*}
$$

allow 55.9 if A_{r} is calculated using 99.69 instead of 100
[Total: 10]
(a) $1 \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$22 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} \quad$ equil (1) equation
(1)
$3 \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Allow sequences that start with SO_{2}
and include $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ before $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Equilibrium mark is only scored if \rightleftharpoons only appears in the $\mathrm{SO}_{2} / \mathrm{SO}_{3}$ equation.
(b) vanadium pentoxide/vanadium (V) oxide $/ \mathrm{V}_{2} \mathrm{O}_{5}$
(1)
(c) (i)

$$
\begin{equation*}
\mathrm{H}_{{ }_{\mathrm{o}}^{\mathrm{x}}}{\stackrel{\mathrm{~S}}{\mathrm{oo}}{ }_{\mathrm{o}}^{\mathrm{x}} \mathrm{H}}^{\mathrm{H}} \tag{1}
\end{equation*}
$$

(ii) non-linear/bent/V-shaped
(iii) $\mathrm{H}_{2} \mathrm{O}$ has hydrogen bonds $/ \mathrm{H}_{2} \mathrm{~S}$ does not or $\mathrm{H}_{2} \mathrm{~S}$ has van der Waals' forces only
hydrogen bonds are stronger
than van der Waals' forces or $\mathrm{H}_{2} \mathrm{~S}$ has weaker intermolecular bonds than $\mathrm{H}_{2} \mathrm{O}$
(1)
(d) (i) $2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
from -2 (1) to +4
allow e.c.f. on equation
(ii) $68.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}$ react with $3 \times 24 \mathrm{dm}^{3} \mathrm{O}_{2}$
$8.65 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}$ react with $\frac{3 \times 24 \times 8.65}{68.2}=9.13 \mathrm{dm}^{3}$
allow $9.16 \mathrm{dm}^{3}$ if $\mathrm{H}_{2} \mathrm{~S}=68$ is used allow e.c.f on (d)(i)
(e) (i) an acid that is partially dissociated into ions
(ii) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})$
or
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{aq} \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})$
or
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq})$ equation (1) state symbols (1)
$3 \quad$ (a) \quad A $\quad \mathrm{MgSO}_{4}$
B MgCl_{2}
C MgCO_{3}
D MgO
E $\mathrm{Mg}(\mathrm{OH})_{2}$
F $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
Accept name or formula
but penalise when name and formula do not agree
(b) (i) Mg to $\mathrm{cpd} \mathbf{A}$
$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}$
cpd C to cpd D
$\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
cpd F to cpd D
$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
[3]
(ii) $\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O}$
(1)
[Total: 10]

4
(a)
(i) stage $\mathrm{I} \quad \mathrm{Cl}_{2} /$ chlorine
(1)
uv//sunlight
stage II KCN
heat in ethanol
(ii) stage III Br_{2}
(1)
uvl/sunlight
(1)
(b) stage IV $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{HCl}(\mathrm{aq})$ or
$\mathrm{NaOH}(\mathrm{aq})$ followed by H^{+} heat/reflux
stage $\mathrm{V} \quad \mathrm{NaOH}(\mathrm{aq})$
heat
(1)
(1)
[4]
(c) (i) a carbon atom in a molecule attached to four different atoms or groups of atoms
(1)
(ii)
 or

correct cpd correctly displayed
(1)
one correct isomer shown as 3D
both isomers shown in mirror object/mirror image arrangement
$5 \quad$ (a) $\quad \mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{66.7}{12}: \frac{11.1}{1}: \frac{22.2}{16}$

$$
=5.56: 11.1: 1.39
$$

$$
=4: 8: 1
$$

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}=72 \quad$ molecular formula $=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
(b) (i) presence of $\mathrm{C}=\mathrm{C} /$ alkene/unsaturated
(ii) -OH group (in $-\mathrm{CO}_{2} \mathrm{H}$ or -OH) present
(1)
[2]
(c) (i) aldehyde/ketone/carbonyl
(1)
(ii) primary alcohol
(1)
(d) restricted rotation about a $\mathrm{C}=\mathrm{C}$ bond
(1)
two different groups on each side of $C=C$
(1)
(e)

one fully correct structure
two fully correct structures with correctly labelled cis-trans
allow (1) for correctly labelled cis-trans structures that are $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ but incorrect
[Total: 10]

