GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:				
	mark available	А	В	E		
Component 2	60	48	42	27		

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/02

CHEMISTRY Paper 2 (Structured Questions)

	Page 1		Mark Scheme					Paper 2
			Mark Scheme A and AS LEVEL – JUNE 2005					
1	(a)	same proton no./atomic no./no. of protons different mass no./nucleon no./no. of neutrons						[2]
	(b)							
				numbe	r of			
		isotope	protons	neutro	ons	electrons		
		⁵⁶ Fe	26	30		26		
		⁵⁹ Co	27	32		27		
			(1)	(1))	(1)		
		give one mark for allow (1) if no colu	mn is correct b		v is cor	rrect		[3]
	(c) (i)	weighted mean/av of an <u>atom</u> (not ele compared with ¹² C one atom of ¹² C h [relative to $^{1}/_{12}$ th the	ement) ; as a mass of e	xactly 12 atom wo	uld get	2]	(1) (1) (1)	
		or						
		mass of 1 mol of a					(1)	
		compared with ¹² C 1 mol of ¹² C has a					(1)	
			111a55 01 12 g				(1)	
	(ii)	A _r = <u>54 x 5.84 + 50</u> 100		<u>x 2.17</u>			(1)	
		= <u>5573.13</u> = 55 100	7 to 3 sf				(1)	
		allow 55.9 if A _r is c	alculated using	99.69 ins	stead o	of 100		[5]
							[Total: 10]
2	(a)	1 S + O ₂ \rightarrow S 2 2SO ₂ + O ₂ =		equil	(1)	equation	(1) (1)	
		3 $SO_3 + H_2O -$		oquii	(')	oquation	(1)	
		Allow sequences t and include H ₂ S ₂ C						
		Equilibrium mark i the SO_2/SO_3 equa		⇔ <u>only</u> a	ppears	in		[4]
	(b)	vanadium pentoxi	de/vanadium(V) oxide/V ₂	O ₅		(1)	[1]
	(c) (i)	H [×] _o S _o [∞] ×H					(1)	
	(ii)	non-linear/bent/V-	shaped				(1)	

	Page 2	Mark Scheme	Syllabus	Paper
		A and AS LEVEL – JUNE 2005	9701	2
	Ĥ	₂ O has hydrogen bonds/H ₂ S does not <u>or</u> ₂ S has van der Waals' forces only /drogen bonds are stronger	(1)	
	th H	an van der Waals' forces <u>or</u> ₂ S has weaker intermolecular bonds an H ₂ O	(1)	[4]
	fr	$H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$ om -2 (1) to +4 low e.c.f. on equation	(1) (1)	
		3.2g H ₂ S react with 3 x 24 dm ³ O ₂ 65g H ₂ S react with <u>3 x 24 x 8.65</u> = 9.13 dm ³ 68.2	(1) (1)	
		low 9.16 dm ³ if H ₂ S = 68 is used low e.c.f on (d)(i)		[5]
	(e) (i) a	n acid that is partially dissociated into ions	(1)	
	(ii) H	$_2S(g)$ + H ₂ O(I) \rightarrow H ₃ O ⁺ (aq) + HS ⁻ (aq)		
	<u>o</u>			
	Н	$_2S(g) + aq \rightarrow H^+(aq) + HS^-(aq)$		
	<u>o</u>			
		$_{2}S(aq) \rightarrow H^{+}(aq) + HS^{-}(aq)$ quation (1) state symbols (1)		[3]
			רז	「otal: 17]
3	B C D	$MgSO_4$ $MgCI_2$ $MgCO_3$ MgO $Mg(OH)_2$ $Mg(NO_3)_2$		
	A	ccept name or formula	(0 4)	[6]

but penalise when name and formula do not agree	(6 x 1)	[6]
	N - 7	

Page 3	3		Mark Scheme		Syllabus	Paper
			A and AS LEVEL – JUNE 2	2005	9701	2
(b) (i)	Mg to cpd Ma + H_2	$\begin{array}{l} \mathbf{A} \\ \mathrm{SO}_4 \rightarrow \mathrm{MgSO}_4 + \mathrm{H}_2 \end{array}$		(1)	
		cpd C to c	pd D			
		cpd F to c	→ MgO + CO ₂ pd D		(1)	
		2Mg(NO ₃)	$_2 \rightarrow 2MgO + 4NO_2 + O_2$		(1)	[3]
(ii)	Mg(OH) ₂	\rightarrow MgO + H ₂ O		(1)	[1]
					ר	Fotal: 10
(a) ((i)	stage I	Cl ₂ /chlorine uvl/sunlight		(1) (1)	
		stage II	KCN		(1)	
		etage ii	heat in ethanol		(1)	
(ii)	stage III	Br ₂		(1)	
			uvl/sunlight		(1)	[6]
(b)		stage IV	H₂SO₄(aq)/HC <i>l</i> (aq) <u>or</u> NaOH(aq) followed by H⁺		(1)	
			heat/reflux		(1)	
		stage V	NaOH(aq) heat		(1) (1)	[4]
(c) (i)		atom in a molecule attached to ent atoms or groups of atoms		(1)	
(ii)		Br	Br/OH		
			Br RCC:N <u>or</u> H	R-C-(<u> </u>	
				R—Ċ—O H 0		

correct cpd correctly displayed one correct isomer shown as 3D	(1) (1)	
both isomers shown in mirror object/mirror image arrangement	(1)	[4]

[Total: 13 max]

Page 4					Mark Scheme	Syllabus	Paper
				A ar	nd AS LEVEL – JUNE 2005	9701	2
5	(a)	C:H:	$O = \frac{66.7}{12}$:	<u>11.1</u> :	<u>22.2</u> 16	(1)	
			= 5.56 :	11.1 :	1.39		
			= 4 : 8 :	1			
		C ₄ H ₈	₃ O = 72	mol	ecular formula = C ₄ H ₈ O	(1)	[2]
	(b) (i)	pres	ence of C=0	C/alke	ne/unsaturated	(1)	
	(ii)	-OH	group (in -C	CO₂H <u>(</u>	or -OH) present	(1)	[2]
	(c) (i)	alde	hyde/ketone	e/carbo	onyl	(1)	
	(ii)	prim	ary alcohol			(1)	[2]
	(d)				ut a C = C bond n each side of C = C	(1) (1)	[2]
	(e)		н		CH ₂ OH		
			СН₃	C=C〔	Н		
			fully correct fully correct			(1)	
			ectly labelle			(1)	
			/ (1) for cori are C₄H ₈ O I		abelled <u>cis-trans</u> structures orrect		[2]
						п	Fotal: 10]
						I	-