MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/31
Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	31

Supervisor's Report

Calculate, correct to 2 dp , the titre if the Supervisor had diluted $47.25 \mathrm{~cm}^{3}$ of FA 2.
This is given by the expression $\frac{47.25}{\text { volume diluted }} \times$ Examiner selected titre

Candidate scripts

Calculate the scaled titre for $47.25 \mathrm{~cm}^{3}$ of FA 2.
Record the value against the titration table and calculate the difference to Supervisor.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	31

(c)	ACE Interpretation PDO Display	(i), (ii) and (iii) Award three marks if all steps are chemically correct. Withhold 1 mark for each chemical error - no negative marks. Count non-completed steps as chemical errors. $\begin{array}{ll} \text { step 1 } & \frac{\text { titre }}{\mathbf{1 0 0 0}} \times \mathbf{0 . 1 5} \\ \text { step 2 } & \times \frac{\mathbf{1}}{\mathbf{2}} \\ \text { step 3 } & \times \mathbf{2} \\ \text { step 4 } & \times \frac{\mathbf{1 0 0 0}}{\mathbf{2 5}} \\ \text { step 5 } & \times \frac{\mathbf{2 5 0}}{\text { volume diluted }} \\ \text { step 6 } & \times \mathbf{2 4 9 . 6} \end{array}$ (iv) Working shown in at least three of the 5 steps (v) Answers to 3 or 4 significant figures in final answer to each step attempted (minimum of three steps required)	1	
(d)	ACE Interpretation	Explains that the maximum error is given by $+0.05 \mathrm{~cm}^{3}$ on one burette reading and $-0.05 \mathrm{~cm}^{3}$ on the other burette reading, or Individual errors are in opposite directions.	1	11
(e)	ACE Interpretation	Calculates $\frac{0.1}{\text { titre }} \times 100 \%$ Answer must be correct to 2 or 3 decimal places.	1	[1]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	31

Supervisor's Report

From the Supervisor's experimental results round times to the nearest second and calculate the average of (volume of sodium thiosulfate x time) for $50 \mathrm{~cm}^{3}$ and for $25 \mathrm{~cm}^{3}$ of sodium thiosulfate.

Candidate's scripts

From the candidate's experimental results round times to the nearest second and calculate (volume of sodium thiosulfate x time) as above.
Record values of (V xt) on script and use in assessing accuracy marks.

Question	Sections	Indicative material	Mark
2 (a)	PDO Layout	(i) Tabulates all experimental readings: volumes of sodium thiosulfate and water, time and rate $(1 / t)$	1
	PDO Recording	(ii) Single table covering all three experiments A single table has no repetition of column headings.	1
		(iii) Table has correct labels and units: e.g. $/ \mathrm{cm}^{3}$, /cubic centimetres, or $\left(\mathrm{cm}^{3}\right)$, (cubic centimetres) or volume in cubic centimetres; Similarly for time (s or seconds but not sec) and rate (s^{-1}, rate (in) per second; ${ }^{1 / \mathrm{s}}$ etc.) At least two different units are required. Where units have not been included in the column or row header there should be the appropriate unit for each entry in the table.	1
	MMO Collection	(iv) All times of reaction are recorded to the nearest second (no decimal places).	1
	MMO Quality	(v) and (vi) Give (v) and (vi) if difference between candidate's ($V \times \mathrm{t}$) values ($\mathbf{5 0}$ \& $\mathbf{2 5} \mathbf{~ c m}^{\mathbf{3}} \mathrm{FA}$ 1), is within 5% of the larger value. Give (vi) only if the difference is $>5 \%$ but $\leq 10 \%$ of the larger value.	2
		(vii) and (viii) Compare the closer of the candidate's ($\mathrm{V} \times \mathrm{t}$) values with the Supervisor's average Vt . Give (vii) and (viii) if difference is within 10% of the Supervisor's value. Give (viii) only if the difference is $>10 \%$ but $\leq 20 \%$ of the Supervisor's value.	2
	MMO Decisions	(ix) Selects $(10-15)$ or $(35-40) \mathrm{cm}^{3}$ sodium thiosulfate and an appropriate volume of water to give a total volume of $50 \mathrm{~cm}^{3}$ (or $55 \mathrm{~cm}^{3}$ if the volume of acid is tabulated).	1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	31

\begin{tabular}{|c|c|c|c|c|}
\hline (b) \& ACE Interpretation \& \begin{tabular}{l}
Candidate shows by calculation or by mathematical expression that \(\left[\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right] \propto\) volume of \(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})\) in \(50 / 55 \mathrm{~cm}^{3}\) of solution. \\
Reference to \(\left(50 / 50\right.\) or \(\left.{ }^{50} / 55\right)\) and \(\left(25 / 50\right.\) or \({ }^{25} / 55\))
\end{tabular} \& 1 \& \\
\hline (c) \& ACE Conclusions \& \begin{tabular}{l}
Explains that rate is given by the inverse of time or is inversely proportional to time; or Rate \(\propto 1 /\) time \\
Allow Rate \(=1 /\) time
\end{tabular} \& 1 \& \\
\hline (d) \& \begin{tabular}{l}
ACE Interpretation \\
ACE Conclusions
\end{tabular} \& \begin{tabular}{l}
(i) Correctly evaluates all Vt values (using times given by candidate, including decimal places where appropriate or \\
(ii) gives an appropriate qualitative statement relating (rate or time) and concentration. \\
Award this mark if either is correct. \\
Gives a quantitative description of relationship. Vt values are required but do not have to be correctly evaluated. \\
Where no pattern is obvious accept an appropriate statement to that effect.
\end{tabular} \& 1

1 \&

\hline (e) \& ACE Improvements \& Explains that volumes of reactants or concentration (of thiosulfate and acid) must be kept constant and describes how the temperature will be varied. \& 1 \&

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	31

Question	Sections	Indicative material	Mark	
FA 5 is $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$; FA 6 is $\mathrm{NaNO}_{2}(\mathrm{aq})$; FA 7 is $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, FA 8 is $\mathrm{MgSO}_{4}(\mathrm{aq})$				
3 (a)	MMO Collection ACE Conclusion	(i) Records no reaction, no change or no precipitate on adding NaOH and $\mathrm{NH}_{3}(\mathrm{aq})$ to FA 5 and FA 6. (ii) Records white ppt soluble (in excess NaOH) and white ppt insoluble (in excess NH_{3}) with FA 7 (iii) Records white ppt insoluble (in excess for both NaOH and NH_{3}) with FA 8 (iv) Conclusion is marked consequentially from the observations for a single cation and a pair of cations. $\mathrm{Mg}^{2+} /$ magnesium from white ppt insoluble in an excess of $\mathrm{NaOH}(\mathrm{aq})$ and in an excess of $\mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{Ca}^{2+} /$ calcium from white ppt insoluble in an excess of $\mathrm{NaOH}(\mathrm{aq})$ no ppt in $\mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{Pb}^{2+} / \mathrm{Al}^{3+}$ from white ppt soluble in an excess of $\mathrm{NaOH}(\mathrm{aq})$ and insoluble in an excess of $\mathrm{NH}_{3}(\mathrm{aq})$ $\mathrm{Ba}^{2+} / \mathrm{NH}_{4}{ }^{+}$from no ppt with $\mathrm{NaOH}(\mathrm{aq})$ or $\mathrm{NH}_{3}(\mathrm{aq})$ FA 6 only	1 1 1	
(b)	MMO Decisions ACE Conclusion	(Warms) with NaOH and $\mathrm{Al}(\mathrm{s})$ and records appropriate test for ammonia. Gas must be tested in at least one test. This is a mark for the method not the observation. Must have indication that the test has been performed with FA 6, FA 7 and FA 8. In awarding the conclusion mark, assume, in this section only, that a blank box indicates no reaction (no ammonia detected). Award this mark for any of the following: (i) a conclusion, from correct observations, that FA 6 and FA 7 contain nitrate or nitrite (ii) correct observations for NH_{3} - only with FA 6 and FA 7, but no conclusion given (iii) a statement that NH_{3} is evolved - only with FA 6 and FA 7 (iv) observation that red litmus turns blue (gas not needed) - only with FA 6 and FA 7	1	

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	31

\begin{tabular}{|c|c|c|c|c|}
\hline (c) \& \begin{tabular}{l}
MMO Collection \\
ACE Conclusions
\end{tabular} \& \begin{tabular}{l}
(i) Observes a change in colour (from yellow) to yellow/orange or orange (solution), no ppt, with FA 5 and \\
a white ppt with FA 7. \\
(ii) Observes a brown gas formed with only FA 6. \\
Mark (iii) and (iv) consequentially to observations \\
(iii) Give this mark for one conclusion providing it is supported by an acceptable explanation. \\
(iv) Give this mark for two further conclusions supported by acceptable explanations. \\
Minimum acceptable supporting evidence: \\
\(\mathrm{CrO}_{4}{ }^{2-}\) from yellow soln or soln turning orange in acid \\
\(\mathrm{NO}_{2}{ }^{-}\)from brown gas \\
or \\
from effervescence/fizzing/bubbling with acid, if named soln has yielded ammonia or an alkaline gas in (b) \\
\(\mathrm{NO}_{3}^{-}\)no brown gas etc with acid, but ammonia evolved in (b) \\
\(\mathrm{Pb}^{2+} \quad\) white ppt with HCl if \(\mathrm{Pb}^{2+}\) in (a) (iv) \\
\(A l^{3^{+}} \quad\) no white ppt with HC if \(\mathrm{A} \mathrm{l}^{3^{+}}\)in (a) (iv)
\end{tabular} \& 1
2 \& \\
\hline (d) \& \begin{tabular}{l}
MMO Collection \\
ACE \\
Conclusions
\end{tabular} \& \begin{tabular}{l}
Mixes FA 5 and FA 7 and observes a yellow ppt. \\
If this section has not been attempted, the correct observation on mixing FA 5 and FA 7 can be carried forward from the conclusions in (c). \\
Concludes that FA 5 contains \(\mathrm{CrO}_{4}{ }^{2-}\) and FA 7 contains \(\mathrm{Pb}^{2+}\) providing the ions have been previously mentioned in (a) or (c).
\end{tabular} \& 1

1 \&

\hline
\end{tabular}

