MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/32
Paper 32 (Advanced Practical Skills 2), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

Question 1

Supervisor's Report

Calculate, correct to 2 d.p., the titre if the Supervisor had diluted $42.75 \mathrm{~cm}^{3}$ of FB 2 .

$$
\text { This is given by the expression } \frac{42.75}{\text { volume diluted }}
$$

Candidate scripts

Calculate the scaled titre for $42.75 \mathrm{~cm}^{3}$ of FB 2.
Record the scaled value against the titration table and calculate the difference to Supervisor.

Question	Sections	Indicative material	Mark	
1 (a)	PDO Layout	(i) Tabulates initial and final burette readings and volume added in each of the tables. Do not award this mark if any final and initial burette readings are inverted or 50 is used as the initial burette reading.	1	
	PDO Recording	(ii) Both burette readings in the dilution table and final and initial burette readings for all accurate titres in the titration table recorded to the nearest $0.05 \mathrm{~cm}^{3}$.	1	
	MMO Collection	(iii) Follows instructions: dilutes $42.50 \mathrm{~cm}^{3}$ to $43.00 \mathrm{~cm}^{3}$ and has any two titres, which may include a rough titre, within $0.20 \mathrm{~cm}^{3}$	1	
	MMO Decisions	(iv) Has at least two titres within $0.1 \mathrm{~cm}^{3}$. Do not include any titre labelled "rough"/"trial" unless the candidate has ticked that value or used it in an expression when calculating the average in (b).	1	
		(v) and (vi) Accuracy Give (\mathbf{v}) and (vi) if difference to Supervisor is $\mathbf{0 . 3}$ or less Give (vi) only for a difference of $\mathbf{0 . 3 +}$ to 0.5 Give neither for a difference greater than 0.5	2	

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

Question 2 Round all thermometer readings to the nearest $0.5^{\circ} \mathrm{C}$

Supervisor's Report

Calculate $\Delta \mathrm{T} / \mathrm{m}$ correct to 2 d.p. for each experiment.

Candidate's scripts

Calculate $\Delta \mathrm{T} / \mathrm{m}$ correct to 2 d.p. for each experiment.
Record values of $\Delta \mathrm{T} / \mathrm{m}$ on script and use in assessing accuracy marks.
Where a candidate has performed one or both of the experiments a number of times (as distinct from adding in portions and recording the increasing temperature on each addition):

Calculate (unrounded) the $\Delta \mathrm{T} / \mathrm{m}$ value for each experiment, then
Take the average of the closest pair, rounded to $2 \mathrm{~d} . \mathrm{p}$.

Question	Sections	Indicative material	Mark	
2 (a)	PDO Layout	Tabulates or lists all experimental readings: - mass of tube + FB 4 - mass of tube + residue - mass, m_{1}, of FB 4 - initial temperature - final temperature - $\Delta \mathrm{T}$	1	
(b)	MMO Quality	Calculate the difference between the Supervisor and candidate values of $\Delta \mathrm{T} / \mathrm{m}$. Give two marks for a difference up to $0.1^{\circ} \mathrm{C} \mathrm{g}{ }^{-1}$ Give one of these two marks for a difference of $+0.1^{\circ} \mathrm{C} \mathrm{g}^{-1}$ to $0.3^{\circ} \mathrm{C} \mathrm{g}^{-1}$.	2	2]
(c)		No mark		
(d)	ACE Interpretation	Calculates (0.15 $\times 84$) or has 12.6 g NaHCO 3	1	[1]
(e)	ACE Interpretation	Gives the maximum error as $1.0^{\circ} \mathrm{C}$. Do not award this mark for an answer of 1.	1	[1]
(f)	ACE Interpretation		1	
(g)	MMO Decisions	Selects a mass between 8.0 and < mass of NaHCO_{3} calculated in (d). (If the candidate's answer to (d) is $<8.0 \mathrm{~g}$; the mass selected should be in the range: and $2 / 3 \times \text { mass in (d) and < mass in (d)) }$ estimates (mass $\times 1.5$) correctly If no mass has been calculated/given in (d), this mark cannot be awarded.	1	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

(h)	PDO recording	Records all weighings, consistently, to at least 1 decimal place in (a) and (h). Records all thermometer readings to (.0) or (.5) in (a) and (h). Where the experiment in (h) has not been attempted, only the mark for consistent weighings may be awarded - from the experimental results in (a).	1	[2]
(i)	MMO Collection	Where mass of (empty) test-tube and mass of testtube + FB 5 are given: mass added to the test-tube should be $\pm 0.2 \mathrm{~g}$ from mass selected in (g). If no mass of (empty) test-tube is recorded, but mass of test-tube + FB 5 and mass of test-tube + residual FB 5 are recorded: mass of FB 5 used in the experiment should be in the range (+0.2 to -0.5)g of mass selected in (g). Calculate the difference between 1.30 and the candidate's value of $\Delta \mathrm{T} / \mathrm{m}$. Give two marks for a difference up to $0.2^{\circ} \mathrm{C} \mathrm{g}^{-1}$ Give one of these two marks for a difference of $+0.2^{\circ} \mathrm{C} \mathrm{g}^{-1}$ to $0.4^{\circ} \mathrm{C} \mathrm{g}^{-1}$	2	
(k)	ACE Conclusions ACE Interpretation	Manipulates Hess cycle to show that $\begin{aligned} & \Delta H_{3}=\Delta H_{1}-2 \Delta H_{2} \text { or } \\ & \Delta H_{1}=\Delta H_{3}+2 \Delta H_{2} \text { or } \\ & 2 \Delta H_{2}=\Delta H_{1}-\Delta H_{3} \end{aligned}$ Correctly calculates a value for ΔH_{3} from equation given by candidate and candidate values from (c) and (j). A +ve sign must be given for any endothermic change The candidate must use the exact values given in the final answers to (c) and $\Delta \mathrm{T} / \mathrm{m}$ but may then correctly round their answer to at least 3 significant figures.	1	
(I)	ACE Improvement	Suggests additional insulation (lid etc.) Candidate must suggest a suitable material to use as insulation or explain how or where the insulation is to be applied. or plots cooling/heating curves, extrapolating to lowest/highest temperature.	1	[1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - May/June 2009	9701	32

(f)	MMO Collection ACE Conclusions	FB 8 Observes white ppt soluble/dissolving/disappearing (in excess) for each reagent. FB 9 Observes white ppt insoluble/not dissolving/remaining (in excess) for each reagent Mark consequentially on observations involving white precipitates only. Expected ions are Zn^{2+} in FB 8 and Mg^{2+} in FB 9 Symbol and ion charge must be correct in any deduction or the name of the ion given: e.g. Zn^{2+} or zinc but not Zn	1 1 1	

