# MARK SCHEME for the May/June 2010 question paper for the guidance of teachers 

## 9701 CHEMISTRY

9701/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

| Page 2 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

1 (a) P: burns with white / yellow flame or copious white smoke / fumes produced

$$
\begin{equation*}
4 \mathrm{P}\left(\text { or } \mathrm{P}_{4}\right)+5 \mathrm{O}_{2} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10} \tag{1}
\end{equation*}
$$

S: burns with blue flame / choking / pungent gas produced

$$
\begin{equation*}
\mathrm{S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2} \tag{1}
\end{equation*}
$$

(b) (i) $2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C} \longrightarrow 1 \mathrm{P}_{4}+6 \mathrm{CaSiO}_{3}+10 \mathrm{CO}$
(ii)

| allotrope | type of structure | type of bonding |
| :---: | :---: | :---: |
| white | simple / molecular | covalent |
| red | giant / polymeric | covalent |

(4)
(iii)

(in each case $P$ has to be trivalent. Many alternatives allowable for the polymeric red $P$ ) (2)
[Total: 11]

| Page 3 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

2 (a) coloured ions / compounds
variable oxidation states
formation of complexes
catalytic activity
(b) (green is $\left.\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\right)$
ppt is $\mathrm{Ni}(\mathrm{OH})_{2}$
blue solution is $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ or $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ or $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
formed by ligand exchange
$\mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Ni}(\mathrm{OH})_{2}$
$\mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-}$
(c) $\mathrm{M}_{\mathrm{r}}=58.7+48+6+28+32=172.7$ (173)
$\mathrm{n}(\mathrm{Ni})=4.00 / 172.7$ = $\mathbf{0 . 0 2 3 2} \mathbf{~ m o l}$
(1)

3 (a) $\mathrm{PbO}_{2}$ decomposed into PbO (and $\left.\mathrm{O}_{2}\right) \cdot\left(\mathrm{SnO}_{2}\right.$ is stable)
(b) (i) $\mathrm{PbCl}_{4}$ dissociates into $\mathrm{Cl}_{2}$ and $\mathrm{PbCl}_{2}$ (white solid)
or $\mathrm{PbCl}_{4} \longrightarrow \mathrm{PbCl}_{2}+\mathrm{Cl}_{2}$ or in words

- (1) (1)
$\mathrm{Cl}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
$\mathrm{E}^{\circ}\left(\mathrm{Cl}_{2} / \mathrm{C} \tau\right)$ is more positive than $\mathrm{E}^{\circ}\left(\mathrm{I}_{2} / \mathrm{I}^{-}\right)$
(ii) $\mathrm{SnCl}_{4}$ is more stable than $\mathrm{PbCl}_{4} /$ answers using $\mathrm{E}^{\circ}$ accepted
(c) (i)

bent or non-linear or angle $=100-140^{\circ}$
(ii) $\mathrm{CCl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}+2 \mathrm{HCl}$

| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

4 (a) hydrogen bonding
diag: $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}---\mathrm{OHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}---\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(i.e. H -bond from OH group to either OH or $\mathrm{NH}_{2}$ )
(b) propylamine is more basic than phenylamine
because lone pair on N is delocalised over ring in phenylamine (so less available for protonation)
or the propyl group is electron-donating, so the lone pair is more available
(c) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}^{+} \longrightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$
or $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HCl} \longrightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{C} t$
or $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+} \mathrm{OH}^{-}$
(reaction with any acceptable Bronsted acid accepted)
(d) (i) X is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
(ii) step 1 is KCN in ethanol, heat [HCN negates] step 2 is $\mathrm{H}_{2}+\mathrm{Ni} /$ Pt or $\mathrm{LiAlH}_{4}$ or Na in ethanol [NOT $\mathrm{NaBH}_{4}$ or $\left.\mathrm{Sn} / \mathrm{HCl}\right]$
(e) ethanolamine:

Na
or $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$
or $\mathrm{MnO}_{4}^{-} / \mathrm{H}^{+}$
or $\mathrm{PCl}_{3} / \mathrm{PCl}_{5} / \mathrm{SOCl}_{2}$
phenylamine:
$\mathrm{Br}_{2}(\mathrm{aq})$
or $\mathrm{HNO}_{2} / \mathrm{H}^{+}$at $\mathrm{T}<10^{\circ} \mathrm{C}$, then phenol in NaOH

| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

5 (a) (i) $\mathrm{E}^{\circ}=0.40-(-0.83)=1.23 \mathrm{~V}$
(ii) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(iii) LH electrode will become more negative

RH electrode will also become more negative / less positive
(iv) no change ecf from (iii)
(v) increased conductance or lower cell resistance or increased rate of reaction
(b) (i) $\mathrm{E}^{0}=1.47-(-0.13)=1.60 \mathrm{~V}$
(ii) $\mathrm{PbO}_{2}+\mathrm{Pb}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{~Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{PbO}_{2}+\mathrm{Pb}+4 \mathrm{H}^{+}+2 \mathrm{SO}_{4}{ }^{2-} \longrightarrow 2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{E}^{\circ}{ }_{\text {cell }}$ will increase
as $\left[\mathrm{Pb}^{2+}\right]$ decreases, $\mathrm{E}_{\text {electrode }}\left(\mathrm{PbO}_{2}\right)$ will become more positive, but $\mathrm{E}_{\text {electrode }}(\mathrm{Pb})$ will become more negative

6 (a) (i) $\mathrm{SOCl}_{2}$ or $\mathrm{PCl}_{5}$ or $\mathrm{PCl}_{3}$
(ii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{SOCl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{SO}_{2}+\mathrm{HCl}$
or $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{PCl}_{5} \longrightarrow \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$ or $3 \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{PCl}_{3} \longrightarrow 3 \mathrm{CH}_{3} \mathrm{COCl}+\mathrm{H}_{3} \mathrm{PO}_{3}$
(b) (i) $\mathbf{A}$ is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$

B is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$
(ii) ester amide
(iii) nucleophilic substitution / condensation
(c) (i) C is ClCOCOCl

D is ClCOCOCOCl
(ii) hydrogen bonding
(iii) because it's an amide or not an amine or its lone pair is delocalised (over $\mathrm{C}=\mathrm{O}$ ) or less
available due to electronegative oxygen [NOT: E is neutral, but the diamine is basic]
(iv) condensation (polymer) or polyester

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

7






[Total: 6]
8 (a)

| Block letter | Identity of compound |
| :---: | :--- |
| J | Deoxyribose (NOT "sugar" or "pentose") |
| K | Guanine |
| L | Phosphate |
| M | Thymine |

All 4 correct score 3 marks, 3 score 2 , 2 score 1
(b) hydrogen bonds (1) between the bases (1)
(c) 1 RNA is a single strand; DNA is double strand

2 RNA contains ribose; DNA contains deoxyribose
(1)

3 RNA contains uracil; DNA contains thymine
4 RNA is shorter than DNA
(d) mRNA - copies the DNA gene sequence or forms a template for a particular polypeptide / in protein synthesis
tRNA - carries amino acids to the ribosome
(1) $[2]$
[Total: 10]

| Page 7 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

## 9 (a) spinning proton produces two spin states / magnetic moments these can align with or against an applied magnetic field

(b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments
peaks are in the area ratio $3: 1$ (methyl to -OH protons)
or are at $0.5-6.0 \delta$ and $3.3-4.0 \delta$
(c) (i)

propanoic acid

methyl ethanoate

ethyl methanoate all for (2) two for (1)
(ii) compound is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$ or methyl ethanoate
the other two compounds each have 3 different proton environments, but the spectrum shows only 2 peaks.
$A$ is $\mathrm{OCH}_{3}, \quad \mathrm{~B}$ is $\mathrm{CH}_{3} \mathrm{CO}$
(iii) compound - propanoic acid or ethyl methanoate
the -OH proton or the $\mathrm{H}-\mathrm{CO}$ proton
(d) (i) distance between atoms / bond lengths / bond angles
(ii) hydrogen atoms
(1) [2]
[Total: 10]

| Page 8 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9701 | 41 |

10 (a) ester or amide (allow nitrile)
(b)

amide (1) + any one ester (1)
allow whole groups circled
(c) (i) hydrophilic drug at C
hydrophobic drug at B both needed
(ii) (at A) the drug would be exposed to attack / breakdown / digestion
(d) (i) at one of the -OH groups
(ii) volume of sphere can be large or one PEG molecule can only carry 1 or 2 drug molecules or can carry different types of drug
(e) more economic
less chance of side-effects / side effects reduced / less chance of allergic reaction less risk of harming healthy tissue / organs / less chance of an overdose
[Total: 10]

