

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

|        | CANDIDATE<br>NAME |                                                      |               |
|--------|-------------------|------------------------------------------------------|---------------|
|        | CENTRE<br>NUMBER  | CANDIDATE<br>NUMBER                                  |               |
| *      |                   |                                                      |               |
|        | CHEMISTRY         |                                                      | 9701/31       |
| 4      | Paper 31 Adva     | Inced Practical Skills                               | May/June 2010 |
|        |                   |                                                      | 2 hours       |
| н<br>б | Candidates ans    | swer on the Question Paper.                          |               |
| о<br>ш | Additional Mate   | erials: As listed in the Instructions to Supervisors |               |
| ×      |                   |                                                      |               |

# READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Give details of the practical session and laboratory where appropriate, in the boxes provided. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

| Session    |
|------------|
|            |
|            |
| Laboratory |
|            |
|            |

| For Examiner's Use |  |
|--------------------|--|
| 1                  |  |
| 2                  |  |
| Total              |  |

This document consists of **11** printed pages and **1** blank page.



## 1 Read through question 1 before starting any practical work.

You are provided with the following reagents.

- **FA 1**, 2.0 mol dm<sup>-3</sup> sulfuric acid, H<sub>2</sub>SO<sub>4</sub>
- FA 2, aqueous sodium hydroxide, NaOH

The reaction of sulfuric acid with sodium hydroxide is exothermic.

In separate experiments you will add increasing volumes of **FA 2** to a fixed volume of **FA 1**. In each experiment you will measure the maximum temperature rise. As the volume of **FA 2** is increased, this maximum temperature rise will increase and then decrease.

By measuring the maximum temperature rise for different mixtures of the two reagents you are to determine the following.

- the concentration of sodium hydroxide, NaOH, in FA 2
- the enthalpy change when 1 mol of  $H_2SO_4$  is neutralised by NaOH

#### (a) Method

- Fill the burette with **FA 1**.
- Support the plastic cup in the 250 cm<sup>3</sup> beaker.
- Run 10.00 cm<sup>3</sup> of **FA 1** from the burette into the plastic cup.
- Measure 10 cm<sup>3</sup> of **FA 2** in a measuring cylinder.
- Place the thermometer in the **FA 2** in the measuring cylinder and record the steady temperature of the solution.
- Tip the **FA 2** in the measuring cylinder into the plastic cup, stir and record the maximum temperature obtained in the reaction.
- Empty and rinse the plastic cup. Rinse the thermometer. Shake dry the plastic cup.
- Carry out the experiment four more times. Each time use 10.00 cm<sup>3</sup> of **FA 1**. Use 20 cm<sup>3</sup>, 30 cm<sup>3</sup>, 40 cm<sup>3</sup> and 50 cm<sup>3</sup> of **FA 2** in these different experiments.

#### Carry out two further experiments.

Choose volumes of **FA 2** which will allow you to investigate more precisely the volume of **FA 2** that produces the highest temperature rise when added to 10.00 cm<sup>3</sup> of **FA 1**.

#### Results

Record your results in an appropriate form showing, for each experiment, the volumes of solution used, temperature measurements and the temperature rise.



For Examiner's Use (b) Use the grid below to plot a graph of temperature rise (y-axis) against the volume of FA 2 added (x-axis). Examiner's Draw a line of best fit through the points where the temperature rise is increasing and another line through the points where the temperature rise is decreasing. The intersection of these lines represents the temperature rise for the volume of FA 2 that exactly neutralises the sulfuric acid present in  $10.00 \text{ cm}^3$  of **FA 1**.

3



For

[Turn over

| (c) | Rea                                | ad from the graph the volume of <b>FA 2</b> that gives the maximum temperature rise.                                                                                                                                                                                                                                                                                                                             | For<br>Examinar's |
|-----|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     |                                    | The volume of <b>FA 2</b> giving the maximum temperature rise is                                                                                                                                                                                                                                                                                                                                                 | Use               |
| (d) | Exp                                | lain why the temperature rise is plotted on the $y$ -axis rather than on the x-axis.                                                                                                                                                                                                                                                                                                                             |                   |
|     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|     | •••••                              | [1]                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| (e) | Cor                                | nstruct the balanced equation for the reaction of sulfuric acid with sodium hydroxide.                                                                                                                                                                                                                                                                                                                           |                   |
|     |                                    | [1]                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| (f) | (i)                                | Calculate how many moles of sulfuric acid, $H_2SO_4$ , are contained in 10.00 cm <sup>3</sup> of <b>FA 1</b> .                                                                                                                                                                                                                                                                                                   |                   |
|     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|     |                                    | 10.00 cm <sup>3</sup> of <b>FA 1</b> contain mol of $H_2SO_4$ .                                                                                                                                                                                                                                                                                                                                                  |                   |
|     | (ii)                               | Calculate how many moles of NaOH are required to neutralise the amount of $\rm H_2SO_4$ calculated in (i) above.                                                                                                                                                                                                                                                                                                 |                   |
|     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|     |                                    | The sulfuric acid in 10.00 cm <sup>3</sup> of <b>FA 1</b> is neutralised bymol of NaOH.<br>[2]                                                                                                                                                                                                                                                                                                                   |                   |
| (g) | Use                                | the equation below to calculate the concentration of NaOH in FA 2.                                                                                                                                                                                                                                                                                                                                               |                   |
| (   | conc                               | entration of NaOH (moldm <sup>-3</sup> ) = answer to (f)(ii) × $\frac{1000}{\text{volume of FA2 (cm^3) from (c)}}$                                                                                                                                                                                                                                                                                               |                   |
|     |                                    | The concentration of NaOH in <b>FA 2</b> =mol dm <sup><math>-3</math></sup> . [1]                                                                                                                                                                                                                                                                                                                                |                   |
| (h) | Rea<br>cha<br>incl<br>[4.3<br>1 °C | ad the maximum temperature rise from the graph and use this to calculate the enthalpy nge when 1 mol $H_2SO_4$ is neutralised by NaOH. Give your answer in kJ mol <sup>-1</sup> and ude the correct sign for the reaction.<br>J are absorbed or released when the temperature of 1 cm <sup>3</sup> of solution changes by 2. Remember that separate volumes of <b>FA 1</b> and <b>FA 2</b> were mixed together.] |                   |
|     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |

 $\Delta H = .... kJ mol^{-1}.$  [2]



2 Solutions FA 3, FA 4 and FA 5 each contain a Group 2 halide. Solution FA 6 contains a potassium salt.

You will carry out tests to deduce the following.

- the anion present in FA 6
- the solution containing the chloride ions
- the solution containing barium ions

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate and the colour of the precipitate

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations. **No additional tests for ions present should be attempted**.

If any solution is warmed directly with a Bunsen burner a boiling-tube MUST be used. Rinse and reuse test-tubes where possible.

(a) Use information from the Qualitative Analysis Notes on page 11 to select a pair of reagents that, **used together**, identify the halide ion present.

| The reagents are |         |
|------------------|---------|
| followed by      | <br>[1] |

(b) Use your chosen reagents to carry out tests on FA 3, FA 4 and FA 5. Record your results in an appropriate form in the space below.

[2]

For

Examiner's Use

(c) From the results of the tests in (b) state which solution contains the chloride ion,  $Cl^{-}$ .

Solution ..... contains the chloride ion.

Explain the evidence that supports your conclusion.

.....[1]

(d) Carry out the following tests on each of the solutions **FA 3**, **FA 4** and **FA 5**. Record your observations below.

| teet                                                                                               | observations |      |      |  |
|----------------------------------------------------------------------------------------------------|--------------|------|------|--|
| lesi                                                                                               | FA 3         | FA 4 | FA 5 |  |
| To 1 cm depth of<br>solution in a test-<br>tube, add 2 cm depth<br>of aqueous sodium<br>hydroxide. |              |      |      |  |
| To 1 cm depth of<br>solution in a test-tube,<br>add 2 cm depth of<br>aqueous ammonia.              |              |      |      |  |
| To 1 cm depth of<br>solution in a test-tube,<br>add 1 cm depth of<br><b>FA 6</b> .                 |              |      |      |  |

[3]

(e) To 1 cm depth of **FA 6** in a test-tube add 1 cm depth of dilute sulfuric acid.

#### observation

.....[1]

For Examiner's Use

(f) From your observations in (d) and (e) you should be able to identify the anion in FA 6 and which of the solutions FA 3, FA 4 or FA 5 contains barium cations.
The anion present in FA 6 is ......
Ba<sup>2+</sup> ions are contained in solution .....
Explain how your observations support your conclusions for
(i) the anion present in FA 6, .....
(ii) the solution containing Ba<sup>2+</sup> ions.

[1]

## Read through the remainder of question 2 before starting further practical work.

### Heat a half-full 250 cm<sup>3</sup> beaker of water for use as a hot water-bath.

- (g) FA 7, FA 8, FA 9 and FA 10 are organic compounds. Each contains one of the following different functional groups.
  - primary alcohol
  - tertiary alcohol
  - aldehyde
  - ketone

You are to react some of these compounds with some of the following reagents.

- acidified aqueous potassium dichromate(VI)
- 2,4-dinitrophenylhydrazine (2,4-DNPH) reagent
- ammoniacal silver nitrate (Tollens' reagent)

You are provided with the first two reagents. You must prepare the last of these reagents, Tollens' reagent, immediately before use. Follow the instructions in the box below.

To 2 cm depth of aqueous silver nitrate in a boiling-tube add ½ cm depth of aqueous sodium hydroxide. This will produce a brown precipitate of silver(I) oxide. Add aqueous ammonia a little at a time, with continuous shaking, until the brown precipitate **just** dissolves. **Do not add an excess of aqueous ammonia**.

In each of the following tests add a few drops of the reagent to 1 cm depth of **FA 7**, **FA 8**, **FA 9** and **FA 10** in separate test-tubes.

In the tests using acidified potassium dichromate(VI) and Tollens' reagent, if no initial reaction is seen, warm that tube and its contents in your hot water-bath. There is no need to heat any tube to which you have added 2,4-DNPH reagent.

Do **not** heat any tube with a naked flame.

Record your results in the table below.

Do not carry out tests for the shaded boxes.

| roagont                                  | observations |      |      |       |  |
|------------------------------------------|--------------|------|------|-------|--|
| Teagent                                  | FA 7         | FA 8 | FA 9 | FA 10 |  |
| acidified<br>potassium<br>dichromate(VI) |              |      |      |       |  |
| 2,4-DNPH<br>reagent                      |              |      |      |       |  |
| Tollens' reagent                         |              |      |      |       |  |

[3]

For

Examiner's Use

(h) State which of the solutions contains a tertiary alcohol. Explain the observations leading to your conclusion.

FA ..... contains the tertiary alcohol.

explanation .....

.....

State which of the solutions contains the aldehyde. Explain the observations leading to your conclusion.

FA ..... contains the aldehyde.

| explanation | <br> | <br> | <br> |  |
|-------------|------|------|------|--|
| •           |      |      |      |  |
|             |      |      |      |  |
|             | <br> | <br> | <br> |  |

[2]

# Key: [ ppt. = precipitate. ]

# 1 Reactions of aqueous cations

|                                         | reaction with                                                                      |                                                                                    |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| ion                                     | NaOH(aq)                                                                           | NH <sub>3</sub> (aq)                                                               |  |  |
| aluminium,<br>Al <sup>3+</sup> (aq)     | white ppt.<br>soluble in excess                                                    | white ppt.<br>insoluble in excess                                                  |  |  |
| ammonium,<br>NH <sub>4</sub> +(aq)      | no ppt.<br>ammonia produced on heating                                             | _                                                                                  |  |  |
| barium,<br>Ba <sup>2+</sup> (aq)        | no ppt. (if reagents are pure)                                                     | no ppt.                                                                            |  |  |
| calcium,<br>Ca <sup>2+</sup> (aq)       | white ppt. with high [Ca <sup>2+</sup> (aq)]                                       | no ppt.                                                                            |  |  |
| chromium(III),<br>Cr <sup>3+</sup> (aq) | grey-green ppt. soluble in excess giving dark green solution                       | grey-green ppt.<br>insoluble in excess                                             |  |  |
| copper(II),<br>Cu <sup>2+</sup> (aq)    | pale blue ppt.<br>insoluble in excess                                              | blue ppt. soluble in excess giving dark blue solution                              |  |  |
| iron(II),<br>Fe <sup>2+</sup> (aq)      | green ppt. turning brown on contact<br>with air<br>insoluble in excess             | green ppt. turning brown on contact<br>with air<br>insoluble in excess             |  |  |
| iron(III),<br>Fe <sup>3+</sup> (aq)     | red-brown ppt.<br>insoluble in excess                                              | red-brown ppt.<br>insoluble in excess                                              |  |  |
| lead(II),<br>Pb <sup>2+</sup> (aq)      | white ppt.<br>soluble in excess                                                    | white ppt.<br>insoluble in excess                                                  |  |  |
| magnesium,<br>Mg <sup>2+</sup> (aq)     | white ppt.<br>insoluble in excess                                                  | white ppt.<br>insoluble in excess                                                  |  |  |
| manganese(II),<br>Mn <sup>2+</sup> (aq) | off-white ppt. rapidly turning brown<br>on contact with air<br>insoluble in excess | off-white ppt. rapidly turning brown<br>on contact with air<br>insoluble in excess |  |  |
| zinc,<br>Zn <sup>2+</sup> (aq)          | white ppt.<br>soluble in excess                                                    | white ppt.<br>soluble in excess                                                    |  |  |

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

### 2 Reactions of anions

| ion                                 | reaction                                                                                                |
|-------------------------------------|---------------------------------------------------------------------------------------------------------|
| carbonate,                          | CO <sub>2</sub> liberated by dilute acids                                                               |
| CO <sub>3</sub> <sup>2-</sup>       |                                                                                                         |
| chromate(VI),<br>$CrO_4^{2^-}$ (aq) | yellow solution turns orange with H <sup>+</sup> (aq);<br>gives yellow ppt. with Ba <sup>2+</sup> (aq); |
| ablarida                            | gives bright yellow ppt. with $PD^{-1}(aq)$                                                             |
| $Cl^{-}(aq)$                        | gives white ppt. with $Pb^{2+}(aq)$ (soluble in $Nh_3(aq)$ ),                                           |
| bromide,                            | gives cream ppt. with Ag <sup>+</sup> (aq) (partially soluble in NH <sub>3</sub> (aq));                 |
| Br <sup>-</sup> (aq)                | gives white ppt. with Pb <sup>2+</sup> (aq)                                                             |
| iodide,                             | gives yellow ppt. with Ag <sup>+</sup> (aq) (insoluble in NH <sub>3</sub> (aq));                        |
| I <sup>-</sup> (aq)                 | gives yellow ppt. with Pb <sup>2+</sup> (aq)                                                            |
| nitrate,                            | $NH_3$ liberated on heating with OH <sup>-</sup> (aq) and Al foil                                       |
| $NO_3^-$ (aq)                       |                                                                                                         |
| nitrite                             | $NH_3$ liberated on heating with OH <sup>-</sup> (aq) and Al foil;                                      |
| $NO_2^-(aq)$                        | NO liberated by dilute acids (colourless NO $\rightarrow$ (pale) brown NO <sub>2</sub> in air)          |
| sulfate,                            | gives white ppt. with $Ba^{2+}(aq)$ or with $Pb^{2+}(aq)$ (insoluble in excess dilute                   |
| SO <sub>4</sub> <sup>2-</sup> (aq)  | strong acids);                                                                                          |
| sulfite,                            | SO <sub>2</sub> liberated with dilute acids;                                                            |
| SO <sub>3</sub> <sup>2-</sup> (aq)  | gives white ppt. with Ba <sup>2+</sup> (aq) (soluble in excess dilute strong acids)                     |

# 3 Tests for gases

| gas                                                       | test and test result                                                               |
|-----------------------------------------------------------|------------------------------------------------------------------------------------|
| ammonia, NH <sub>3</sub> turns damp red litmus paper blue |                                                                                    |
| carbon dioxide, CO <sub>2</sub>                           | gives a white ppt. with limewater<br>(ppt. dissolves with excess CO <sub>2</sub> ) |
| chlorine, Cl <sub>2</sub>                                 | bleaches damp litmus paper                                                         |
| hydrogen, H <sub>2</sub>                                  | "pops" with a lighted splint                                                       |
| oxygen, O <sub>2</sub>                                    | relights a glowing splint                                                          |
| sulfur dioxide, SO <sub>2</sub>                           | turns acidified aqueous potassium dichromate(VI) from orange to green              |

### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.