MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	22

1
(a) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{R}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{H}\right][\mathrm{ROH}]}$
no units
(b) (i) $n(\mathrm{NaOH})=\underline{22.5 \times 2.00}=0.045$

$$
\begin{equation*}
1000 \tag{1}
\end{equation*}
$$

(ii) $n(\mathrm{NaOH})=n(\mathrm{HCl})=0.005$
(iii) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}+\mathrm{H}_{2} \mathrm{O}$
(iv) $n(\mathrm{NaOH})=0.045-0.005=0.04$
allow ecf on (i) and/or (ii)
(c) (i) $n(\mathrm{NaOH})$ and $n\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)=0.04$
$n\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{R}\right)$ and $n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.06$
(ii) $K_{\mathrm{c}}=\frac{0.06 \times 0.06}{0.04 \times 0.04}=2.25$
allow ecf on wrong values in (b)(i) allow ecf on wrong expression in (a)
(d) E_{a} for reaction with ester is high or E_{a} for reaction with acid is low
or
reaction with ester is slow or reaction with acid is fast
(e) equilibrium moves to $\mathrm{RHS} /$ more ester would be formed
to maintain value of K_{c} or to restore system to equilibrium

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	22

2 (a)

	$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HF}$		$\rightarrow \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}$		
bonds	$4 \mathrm{C}-\mathrm{H}$	1640	bonds	$5 \mathrm{C}-\mathrm{H}$	2050
broken	$1 \mathrm{C}=\mathrm{C}$	610	made	$1 \mathrm{C}-\mathrm{C}$	350
$/ \mathrm{kJ} \mathrm{mol}^{-1}$	$1 \mathrm{H}-\mathrm{F}$	562	$/ \mathrm{kJ} \mathrm{mol}^{-1}$	$1 \mathrm{C}-\mathrm{F}$	E
		2812			+E)

breaking reactant bonds requires
$4 \times 410+610+562=2812 \mathrm{~kJ} \mathrm{~mol}^{-1}$
making product bonds gives
$5 \times 410+350+E=(2400+E) \mathrm{kJ} \mathrm{mol}^{-1}$
$\Delta H_{\text {reaction }}=-(2400+E)+2812=-73 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$(2400+E)=2812+73=2885 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$E=2885-2400=485 \mathrm{~kJ} \mathrm{~mol}^{-1}$
allow ecf on wrong bond energy values and/or incorrect arithmetic
(b) any two from
non-toxic
unreactive
volatile
non-flammable
easily liquefied
(c) in $\mathrm{CCl}_{2} \mathrm{~F}_{2}$
$\mathrm{C}-\mathrm{Cl}$ bond energy is $340 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and is weaker than $\mathrm{C}-\mathrm{F}$ or $\mathrm{C}-\mathrm{H}$ bonds
$\mathrm{C}-\mathrm{Cl}$ bond is broken by uvl or
Cl free radicals are formed
(d) (i) the trapping of reflected heat from the Earth in the lower atmosphere producing global warming
(ii) $\mathrm{CO}_{2} /$ carbon dioxide
(e) octahedral

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	22

3

(a) $\mathrm{R} \quad \mathrm{BaO}$
(1)

S BaCl_{2}
(1)

T $\mathrm{Ba}(\mathrm{OH})_{2}$
(1)

U BaSO_{4}
(1)
$v \mathrm{BaCO}_{3}$
(1)

W $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
(b) (i) T to W
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
heat on \mathbf{V}
$\mathrm{BaCO}_{3} \rightarrow \mathrm{BaO}+\mathrm{CO}_{2}$
(ii) T to V

$$
\begin{align*}
& \mathrm{CO}_{2} \tag{1}\\
& \mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{BaCO}_{3}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{align*}
$$

(c) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ or any soluble sulfate

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	22

(d) (i) $\mathrm{Ba}: \mathrm{O}=\frac{81.1}{137}: \frac{18.9}{16}$

$$
\begin{align*}
& =0.59: 1.18 \\
& =1: 2 \\
& \text { gives } \mathrm{BaO}_{2} \tag{1}
\end{align*}
$$

(ii) BaSO_{4}
(iii) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
[Total: 15]

titanium/graphite anode identified correctly
steel cathode identified correctly
diaphragm identified correctly
all three outlets correctly shown
(ii) anode $2 \mathrm{Ct}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
cathode $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
or

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \tag{1}
\end{equation*}
$$

(iii) sodium hydroxide

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	22

5 (a) ${ }_{c}^{\mathrm{CH}} \mathrm{CH}_{2} \mathrm{OCO}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CH}_{3}$
all three alcohol groups must be esterified
(b) dilute HCl or dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ or dilute mineral acid or $\mathrm{NaOH}(\mathrm{aq})$ followed by dilute acid
(c)

(d) (i) fatty acid that contains more than one $\mathrm{C}=\mathrm{C}$ bond
(ii) hydrogen $\begin{aligned} & \text { nickel/Raney nickel/platinum/palladium }\end{aligned}$
(e) (i) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CHO}$
(ii) 2,4-dinitrophenylhydrazine
yellow/orange/red precipitate
(iii) Tollens' reagent
or Fehling's/Benedict's solution
silver mirror/ or brick red ppt. grey precipitate
(f) (i) two
(ii) ester

