MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/31 Paper 31 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	31

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	31

\begin{tabular}{|c|c|c|c|c|}
\hline (b) \& ACE Interpretation \& \begin{tabular}{l}
Calculates the mean, correct to 2 decimal places from any accurate titres within \(0.20 \mathrm{~cm}^{3}\). \\
The third decimal place may be rounded to the nearest \(0.05 \mathrm{~cm}^{3}\). \\
A mean of exactly .x25 or .x75 is allowed but the candidate may round up or down to the nearest \(0.05 \mathrm{~cm}^{3}\). \\
If ALL burette readings are given to 1 decimal place then the mean can be given to 1 decimal place if numerically correct without rounding. \\
Mean of 24.3 and \(24.4=24.35(\sqrt{\prime})\) \\
Mean of 24.3 and \(24.4=24.4(x)\) \\
Titres to be used in calculating the mean must be clearly shown - in an expression or ticked in the titration table.
\end{tabular} \& 1 \& [1] \\
\hline (c) \& \begin{tabular}{l}
ACE Interpretation \\
PDO Display
\end{tabular} \& \begin{tabular}{l}
I Expression needed in step (i) (= mean titre \(\times 0.15 / 1000 \mathrm{~mol}\)) \\
and \\
step (ii) (= answer to step (i) / 2) \\
No irrelevant or incorrect working should be included. \\
II Correctly evaluates step (iii) (= answer to step (ii) \(\times 10\)) \\
and \\
step (iv) (= answer to step (iii) \(\times 40\)) \\
III Some relevant working shown in a minimum of three parts in the calculation. \\
(In (ii) could be \(\times 2\) or \(\div 2\), in (iii) could \(\times 10\) or \(\div 10\)). \\
IV All answers given are quoted to 3 or 4 sig figs (must be a minimum of three steps)
\end{tabular} \& 1
1
1

1
1
1 \& [4]

\hline \& \multicolumn{4}{|r|}{[Total: 12]}

\hline
\end{tabular}

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	31

2 (a)	MMO Collection PDO Recording ACE Interpretation	I Two pairs of temperature values recorded as instructed in (a), with units for all readings in (a) and (b) - minimum of 3 readings. Acceptable units are ${ }^{\circ} \mathrm{C}$, $\left({ }^{\circ} \mathrm{C}\right)$, temperature in degrees Celsius, temperature in ${ }^{\circ} \mathrm{C}$. II All thermometer readings recorded to $0.0^{\circ} \mathrm{C}$ or $0.5^{\circ} \mathrm{C}$. (check readings in sections 2(a) and 2(b) minimum of 4 readings). III Correct subtractions to give temperature rises and the correct mean value in 2(a). Mean value may be rounded to $0.5^{\circ} \mathrm{C}$ or to one d.p or to $0.05^{\circ} \mathrm{C}$ and from 0.025 and 0.075 or these may be rounded up or down to nearest 0.1.	1 1 1 1	
Supervisor script: check subtractions and calculate mean ΔT Marks are awarded for comparing the "true" means: check working of candidate and Supervisor. Show Supervisor's mean (corrected if necessary) on the script in a ring.				
	MMO Quality	Award IV and \mathbf{V} if candidate's mean temp rise is within $2.0^{\circ} \mathrm{C}$ of Supervisor's (incl) Award IV if the difference is between $2.0^{\circ} \mathrm{C}$ and $3.0^{\circ} \mathrm{C}$.	1 1	[5]
	PDO Display	Heat produced $(J)=25 \times 4.3 \times$ temp rise (method mark). Unit is needed in the quoted answer ($k J$ if divided by 1000). Correctly evaluates enthalpy change $=$ heat produced 0.016 . Division by 1000 is not required if candidate did this in the previous step. Answer must be negative and to 3 sig figs.	1 1	[2]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	31

Examiner to calculate 20% and 40% of supervisor's $\Delta \mathrm{T}$ and convert to nearest $0.5^{\circ} \mathrm{C}$.

\begin{tabular}{|c|c|c|c|c|}
\hline (b) \& \begin{tabular}{l}
ACE \\
Interpretation MMO Quality
\end{tabular} \& \begin{tabular}{l}
I Both temperature measurements clearly shown. \\
Award II and III if candidate's temp rise is within \(20 \%\) of Supervisor's. \\
Award II if candidate's temp rise is within \(40 \%\) of Supervisor's.
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \& [3] \\
\hline \& \begin{tabular}{l}
ACE Interpretation PDO Display \\
ACE Conclusions
\end{tabular} \& \begin{tabular}{l}
IV Calculates 0.032 for moles in (ii) or 0.016 for moles in (a)(ii). \\
V Enthalpy change correctly calculated (\(=-\) heat change \(/{ }_{0.032}\)). \\
Answer must show negative sign (unless already penalised) and be given to 3 sig figs. (unless already penalised). \\
VI Correct calculation of enthalpy change
\[
\Delta H_{1}=\Delta H_{2}-\Delta H_{3}-286
\]
\end{tabular} \& 1
1

1 \& [3]

\hline (c) \& | ACE |
| :--- |
| Improvements | \& Extra/thicker lagging or use a lid or use a vacuum flask \& 1 \& [1]

\hline \& \multicolumn{4}{|r|}{[Total: 14]}

\hline
\end{tabular}

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	31

FA 7 is $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$; FA 8 is $\mathrm{CuSO}_{4}(\mathrm{~s})$

$3 \quad$ (a) (i) (ii) (iii) (iv) (v)	MMO Collection MMO Collection ACE Conclusions MMO Decisions MMO Collection MMO Decisions ACE Conclusions	No change (or no precipitate or no reaction) both with barium chloride and silver nitrate. Gentle heat: solid melts or dissolves or gives a colourless liquid Brown fumes/gas produced (allow 'qualified' brown e.g. red/brown, do not allow orange). (Gas produced) that relights a glowing splint or yellow solid, goes white on cooling. (Allow precipitate). FA 7 is a nitrate/nitrite (from some evidence) (Heat) FA 7 with Al foil and $\mathrm{NaOH} /$ ecf from anion given. Gas/vapour/NH3 produced and it turns red litmus to blue and confirms that FA 7 contains nitrate/nitrite ions. Adds ammonia. (This mark is not awarded if a second test is also used) Zinc ions are present. (No ecf) (Deduction must be consistent with observations recorded - white ppt soluble in excess).	1 1 1 1 1 1 1 1 1 1 1 1 1	[9]
(b) (i) (ii) (iii)	MMO Collection ACE Conclusions MMO Collection ACE Conclusions	With KI, goes yellow/orange/brown and gives a blue (blue-black or purple or black) colour with starch. No reference to the state is required, just the colours. Brown/yellow/white/off- white precipitate forms. KI is the reducing agent (or it is oxidised) as iodine is formed $\text { or } 2 \mathrm{I}^{-}-2 \mathrm{e}^{-} \rightarrow \mathrm{I}_{2} \text { or } 2 \mathrm{Cu}^{2+}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cu}^{+}$ Ignore state symbols. Blue (do not allow dark blue) precipitate obtained, which does not dissolve in excess NaOH $\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}$	1 1 1 1 1 1	[5]

