MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

1 (a) $\mathrm{N} \equiv \mathrm{N}$ triple bond is (very) strong or the N_{2} molecule has no polarity
(b) $3 \mathrm{Mg}(\mathrm{s}) \rightarrow 3 \mathrm{Mg}^{2+}(\mathrm{g}) \quad \Delta \mathrm{H}_{1}=3 \times 148+3 \times 2186=7002$
$\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}^{3-}(\mathrm{g}) \quad \Delta \mathrm{H}_{2}=994+2 \times 2148=5290$
$L E=-\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}-461=-12,753\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(-[1] for each error) [3]
(c) (i) $\mathrm{Li}_{3} \mathrm{~N}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+3 \mathrm{LiOH}$ (balanced equation)
(ii) advantage: no high pressure/temperature/catalyst needed/standard conditions used disadvantage: Li is expensive
or Li would need to be recycled/removed
or LiOH by-product is corrosive/strongly basic
or this would be a batch, rather than continuous process
(d) (i) $\mathrm{Li}_{3} \mathrm{~N}: 100 \times 14 / 35=40 \% \mathrm{~N}$
urea: $100 \times 28 / 60=47 \% \mathrm{~N}$
(ii) amide
(iii) $\mathrm{NH}_{2} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CO}_{2}$
or $\rightarrow \mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{NH}_{3}$
or $\mathrm{NH}_{2} \mathrm{CONH}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}$
(iv) The LiOH would be strongly alkaline or would increase the pH of the soil or would 'burn' the crops/reduce plant growth/stunt plants or would contaminate the environment

2 (a) (i) One that can go in either direction.
(ii) both forward \& reverse reactions are going on at the same time, but the concentrations of all species do not change (owtte)
or rate of forward = rate of backward reaction
(b) (i) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
(ii) $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
rearrangement of equation in (i) gives $\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \& \mathrm{~K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]$ (owtte) or the $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is contained within K_{w}
(iii) K_{w} will be higher in hot water because reaction is endothermic
(c) (i) $\left[\mathrm{OH}^{-}\right]=5 \times 10^{-2} ;\left[\mathrm{H}^{+}\right]=\left(1 \times 10^{-14}\right) / 5 \times 10^{-2}=2 \times 10^{-13}$
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=12.7$
(correct ans = [2]) ecf [1]
(ii) $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{OH}^{-}\right](=x)$
$x^{2}=1.8 \times 10^{-5} \times 0.05 \Rightarrow x\left(=\left[\mathrm{OH}^{-}\right]\right)=9.49 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad$ (correct ans $\left.=[2]\right)[1]$
(iii) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1 \times 10^{-14}\right) / 9.49 \times 10^{-4}=\mathbf{1 . 0 5} \times \mathbf{1 0}^{-11}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad$ eff $[1]$
(iv) $\mathrm{pH}=11.0$
ecf [1]
[Total: 12 max 11]

3 (a) (+)1; (+)2; (+)3; (+)4
O.N. corresponds to the no. of electrons in outer/valence shell/lost
(b) PCl_{5} fizzes or white/misty fumes or heat evolved
$\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}$ or $\mathrm{PCl}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{3}+5 \mathrm{HCl}$
(allow partial hydrolysis: $\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{POCl}_{3}+2 \mathrm{HCl}$)
(c) (i) $\mathrm{P}=30.4 / 31=0.98 \mathrm{Cl}=69.6 / 35.5=1.96$

Thus E.F $=\mathrm{PCl}_{2}$
$\mathrm{M}_{\mathrm{r}}\left(\mathrm{PCl}_{2}\right)=102$, so $2 \times \mathrm{PCl}_{2}=204 \approx 200$, so M.F. $=\mathrm{P}_{2} \mathrm{C} \boldsymbol{l}_{4}$
(ii)

(ignore lone pairs on Cl)
(iii) O.N. $=(+) 2$
(iv) $\begin{aligned} & (\mathrm{HO})_{2} \mathrm{P}-\mathrm{P}(\mathrm{OH})_{2} \text { or } \mathrm{H}(\mathrm{HO}) \mathrm{P}(=\mathrm{O})-\mathrm{P}(=\mathrm{O})(\mathrm{OH}) \mathrm{H} \text { ecf from structure in (ii) [1] } \\ & \text { Allow } \mathrm{HO}-\mathrm{P}-\mathrm{OH} \text { or } \mathrm{HO}-\mathrm{P}=\mathrm{O}\end{aligned}$ (

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

4 (a) $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ (or via NO) or $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
(b) (i) catalytic converter and passing the exhaust gases over a catalyst/Pt/Rh
(ii) $\mathrm{NO}_{2}+2 \mathrm{CO} \rightarrow 1 / 2 \mathrm{~N}_{2}+2 \mathrm{CO}_{2}$ or similar

Allow $2 \mathrm{NO}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(c) No, it wouldn't be reduced. Because the reaction in (a) does not presuppose a particular fuel (owtte)
Allow formed from N_{2} and O_{2} in air during combustion
(d) (i) SO_{3} produces acid rain
(ii) $\mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$
(iii) $\mathrm{K}_{\mathrm{p}}=\left(p_{\mathrm{NO}} \cdot p_{\mathrm{SO}_{3}}\right) /\left(p_{\mathrm{NO}_{2}} \cdot p_{\mathrm{SO}_{2}}\right)$
units: dimensionless/none (don't accept just a blank!)
(iv) $\mathrm{K}_{\mathrm{p}}=99.8^{2} / 0.2^{2}=2.5 \times 10^{5}$
(v) It will shift to the right (owtte) because the reaction is exothermic. NOT just Le Chatelier argument

5 (a)

transformation	reagent + conditions
$\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	HCl, no light or catalyst
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	conc $\mathrm{HCl}+\mathrm{ZnCl}_{2}$ or $\mathrm{SOCl} l_{2}$ or PCl_{5} or PCl_{3} and heat
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	Cl_{2} + light
$\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	Cl_{2}, no light or catalyst
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{COCl}$	SOCl_{2} or PCl_{5} or PCl_{3} and heat
$\mathrm{H}_{3} \mathrm{C}-\longrightarrow$	$\mathrm{Cl}_{2}+\mathrm{AlCl}_{3}$
	$\mathrm{Cl}_{2}+$ light or heat

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

(b) (i) production of $\mathrm{NO}_{2}^{+}: 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow 2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}$
(accept $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}{ }^{+}$)

curly arrow from ring to $\mathrm{NO}_{2}{ }^{+}$and from C-H bond to ring
correct intermediate, including charge in the right place
Note charge area must be more than half ring
(ii) C is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
(iii) step 1: reagent is hot acidified or alkaline KMnO_{4}
step 2: reagent is $\mathrm{Br}_{2}+\mathrm{FeBr}_{3} / \mathrm{AlCl}_{3}$ etc. ($\mathrm{H}_{2} \mathrm{O}$ or light negates)
(If \mathbf{C} is given as 3-bromotoluene, then allow the last [2] marks if steps 1 and 2 are reversed.)
[Total: 12]

6 (a) (i) aqueous alkaline iodine or $\mathrm{I}_{2}+\mathrm{OH}^{-}(\mathrm{aq})$ allow $\mathrm{NaClO}+\mathrm{KI}$
(ii) $\mathrm{CH}_{3} \mathrm{CO}$ - or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ -
(iii) Pale yellow ppt. or antiseptic smell
(iv)

compound	result
$\mathrm{CH}_{3} \mathrm{OH}$	\times
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	\checkmark
$\mathrm{CH}_{3} \mathrm{CHO}$	\checkmark
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	\times
\square	\times
	\checkmark

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

(b) (allow displayed, skeletal or structural formulae)

D
E
$\underset{(\text { no mark for }}{\text { F }}$

$(\mathbf{D}+\mathbf{E}+\mathbf{F}): 3 \times[1]$
(c) (allow displayed, skeletal and structural formulae)

Must be consistent with F

G
allow for \mathbf{G}

(N.B. letters H, J, K can be swapped around) geometrical or cis-trans isomerism
(only allow mark for \mathbf{H} if \mathbf{G} is the $3-\mathrm{OH}$ acid)

K

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

7 (a) The tertiary/3-dimensional structure/shape is held together by hydrogen/ionic/van der Waals bonds
These break (relatively) easily/are weak/break at/above $45^{\circ} \mathrm{C}$
(b) (or similar diagrams)

(c) a competitive inhibitor combines with the enzyme's active site (so preventing the substrate from binding)
non-competitive inhibitor bonds with the enzyme away from the active site/at an allosteric site
this changes the shape of the active site
Also allow competitive inhibition can be overcome by increasing [substrate] or non-competitive inhibition cannot be removed by increasing [substrate] for the 3rd mark
(d) (i)

Line must be of similar shape to original but level out below original line
(ii) Inhibitor reduces the number of enzymes with 'working' active sites (owtte)
[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

8 (a) partition - separation due to the different solubilities of compounds in two solvents/phases
adsorption - separation due to the different attractions between the compounds and the stationary phase, relative to their solubility in the solvent
Note, if candidates do not refer to different solubilities and different attractions
(b)

> Ring:
> A $+\mathbf{B}$:
(c) (i) X is bromine -M and $(\mathrm{M}+2)$ peaks almost same height
(ii) $\frac{\mathrm{M}}{\mathrm{M}+1}=\frac{100}{1.1} \times \frac{9}{\mathrm{n}}=\frac{100}{0.3} \quad 1.1 \times n$

Hence $\mathrm{n}=\frac{100 \times 0.3}{1.1 \times 9}=3.03 \quad p=3$
(If the mass peak is at 122 and the compound contains Br and 3 C atoms then $Q=(122-79-36)$) thus $\mathbf{Q}=7$
ecf from (ii) [1]
(The compound is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$)
(iii) (R is at $m / e ~ 43$), hence $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$
(d) Any two from $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CH}_{4}$
[Total: 10]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - May/June 2011	9701	41

9 (a) (i) One
(ii) Any alkene (or allow a cyclic amide, as in caprolactam)
(b) Any TWO from: addition needs unsaturated/double bonds/alkene condensation eliminates a small molecule condensation needs a molecule other than a hydrocarbon empirical formula of addition polymer is the same as that of its monomer condensation needs two different functional groups
(NOT - "condensation needs two different monomers") $2 \times$ [1]
(c) (i) Water
(ii)

Correct 'ester' bond
'sticks' to rest of molecule
Note : candidates need only show 'brackets' if more than one repeat unit shown
(iii) Polyesters
(d) Monomers in Terylene have to alternate in order to condense out water (owtte)

Alkenes can link in any order (and still form a polyalkene) (or diagram showing this)

