MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	21

1 (a)

(a)									
	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_4O_{10}	SO ₂	C <i>l</i> ₂ O ₇		
	alkaline	basic	amphoteric	acidic	acidic	acidic	acidic		
	Na₂O is alka	aline – allow	basic					(1)	
	MgO is basi	c – allow alł	aline					(1)	
	A <i>l</i> ₂ O ₃ is amp	ohoteric						(1)	
	SiO ₂ , P ₄ O ₁₀ ,	and SO_2 ar	e all acidic					(1)	[4]
	any two fror sodium, pho two names	sphorus, su	lfur and chlor	ine				(1)	[1]
(c)	floats vigorou: melts/fo moves disappe		dissolves				(an	y 3)	
(or	$20 \rightarrow NaOl$ $2H_2O \rightarrow 2N$						(1)	[4]
(d)	(i) combus	tion of fossi	ا fuels – e.g. f	-					
	volcanio		n of metals fro ourning sulfur		res or			(1)	
(ii) H₂SO₄ or SO₃ al	low H ₂ SO ₃	formula requ	uired				(1)	
(i	ii) acid raii or its cons		.g. damage t damage t deforesta	o crops, pla	nts, marine	life			
	or SO₃ is t	oxic	Generola					(1)	[3]
(e)	it is a reduci	ng agent/an	tioxidant						
	or it kills bacter	ria						(1)	[1]

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	,
		GCE AS/A LEVEL – May/June 2012	9701	21	
	(f) (i)	$ \begin{array}{c} \circ & \bullet & \circ & \circ \\ \circ & \circ & \circ & \bullet & \circ & \circ \\ \circ & \circ & \circ & \circ & \circ & \circ & \circ \\ \circ & \circ &$			
		$\bigcirc \bigcirc \bigcirc \bigcirc $		(1)	
	(ii)	180°		(1)	[2]
				[Total:	: 15]
				-	-
2	cor	$H_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$ rect products rectly balanced equation		(1) (1)	[2]
	(b) (i)	NaOH + HC $l \rightarrow NaCl + H_2O$		(1)	
	(ii)	$n(HCl) = \frac{31.2}{1000} \times 1.00 = 0.0312 = 0.03$		(1)	
	(iii)	$n(NaOH) = \frac{50.0}{1000} \times 2.00 = 0.10$		(1)	
	(iv)	n(NaOH) used up = 0.10 - 0.0312 = 0.0688 = 0.07		(1)	
	(v)	$n[(NH_4)_2SO_4] = \frac{0.0688}{2} = 0.0344 = 0.03$		(1)	
	(vi)	mass of $(NH_4)_2SO_4 = 0.0344 \times 132 = 4.5408 = 4.54$		(1)	
	(vii)	percentage purity = $\frac{4.5408 \times 100}{5.00}$ = 90.816 = 90.8		(1)	[7]

	Page 4				lark Sche						Syllabus		Paper	,
				GC	CE AS/A	_EVE	EL – May	//Ju	ne 2012		9701		21	
3	(a)			$P_2(g) \rightarrow CC$ alpy change		chano	ge/heat (chan	ide when				(1)	
				e of a comp			90,		.gee				(1)	
		is fo	ormeo	d from its el	ements ir	ı thei	r standa	rd st	ates				(1)	[3]
	(b)	(i)	ΔH^{e}_{f}	/kJ mol ⁻¹	CO ₂ (g –394) +	3H ₂ (g) 0	\rightleftharpoons	CH₃OH(g) –201	+	H ₂ O(g) -242			
			∆H ^ə r _⊿q	_{reaction} = –2 kJ mol ^{–1}	01 + (–24	2) –	(–394)						(1) (1)	
				ect sign									(1)	
		(ii)		oval of CO ₂ is a greent				al w	armina				(1) (1)	[5]
			002	is a green	louse gas	"cau	ses giob		arriirg				(1)	[0]
	(c)			art, in each to gain the				be c	correctly sta	ated				
				emperatur										
				educed/equ forward rea				vers	e reaction	is end	othermic		(1) (1)	
				oressure ncreased o	r equilibri	um g	oes to R	HS					(1)	
				oles/molecu					s/molecules	s on Ll	HS		(1)	
				atalyst	a a								(1)	
				es not chan and backwa	•	speed	ded up b	y sa	ime amoun	t			(1) (1)	[6]
												I	[Total:	14]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2012		GCE AS/A LEVEL – May/June 2012	9701	21	
4	(a) (i) $C_2H_5OH \rightarrow C_2H_4 + H_2O$			(1)		
	(ii) elimina		ination or dehydration		(1)	
	(iii)	sulfu	sphoric acid or concentrated sulfuric acid uric acid must be 'concentrated' v aluminium oxide		(1)	[3]

(b)

	with HBr	with MnO₄ [−]
colour at start	colourless	purple or pink
colour after reaction	colourless	colourless or decolourised
structural formula of product	CH₃CH₂Br	HOCH ₂ CH ₂ OH

with hydrogen bromide		
from colourless to colourless both colours required		
do not allow 'clear' instead of colourless	(1)	
CH ₃ CH ₂ Br	(1)	
with potassium manganate(VII)		
from purple/pink to colourless/decolourised both colours required	(1)	
HOCH ₂ CH ₂ OH	(1)	[4]
	()	• •

(c) (i)
$$C_6H_{10}$$
 (1)

(ii)

Br

accept answers which have $-CH_2$ - in the ring (1)

(iii) electrophilic (1) addition (1)

(iv)

CO₂H CO₂H

or

$HO_2C(CH_2)_4CO_2H$ or		
$HO_2CCH_2CH_2CH_2CO_2H $ (*	1)	
accept answers which have –CH ₂ – in the ring	[5	5]

[Total: 12]

	Page 6	6	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9701	21	
5	(a) car	boxyli	c acid or –CO ₂ H or –COOH		(1)	[1]
	(b) (i)	alcol	hol		(1)	
	(ii)	n(H₂	$=\frac{160}{24000} = 6.67 \times 10^{-3} \text{ mol}$		(1)	
		<i>п</i> (Н :	atoms) = $2 \times 6.67 \times 10^{-3}$ mol = 1.33×10^{-2} mol		(1)	
	(iii)	n(X)	$=\frac{0.600}{90}$ = 6.67 × 10 ⁻³ mol			
		n(X) = 1	: $n(H \text{ atoms}) = 6.67 \times 10^{-3} : 1.33 \times 10^{-2}$			
		since	e each –OH group produces one H atom e are two –OH groups		(1)	[4]
	(c) (i)		_Н _Н			
		((1)	
	(ii)		CH ₂ CH(OH)CHO as the minimum v the <i>gem</i> diols(HO) ₂ CHCH ₂ CHO or CH ₃ C(OH) ₂ CHO		(1)	
		anov			(')	
	(iii)	HOC	$CH_2CH(OH)CO_2H \text{ or } HOCH_2CH(OH)CO_2^-$		(1)	[3]
	(d) (i)	HOC	CH ₂ CH(OH)CH ₂ OH		(1)	
	(ii)	HO ₂	CCOCO ₂ H		(1)	[2]
					[Total:	10]