MARK SCHEME for the May/June 2013 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9701	23

1 (a) (i)

		S atom has 6 and C atom has 4 electrons	(1)	
		S=C double bonds (4 electrons) clearly shown	(1)	
	(ii)	linear and 180°	(1)	[3]
(b)	(i)	$CS_2 + 3O_2 \rightarrow CO_2 + 2SO_2$	(1)	
	(ii)	enthalpy change when 1 mol of a substance	(1)	
		is burnt in an excess of oxygen/air		
		or is completely combusted		
		under standard conditions	(1)	[3]

(c)

	CS_2	+	3O ₂	\rightarrow	CO_2	+	2SO ₂	
∆ <i>H</i> f [⊕] /kJ mol ⁻¹	Х				-395		2(-298)	(1)
$\Delta H_{\text{reaction}} = -39$	95 + 2((–29	8) – x	= -11	10 kJ mol ⁻	1		(1)
gives $x = -39$	5 + (–5	596)	+ 111	0 = +1	19 kJ mol	-1		(1) [3]

(d) (i) $CS_2 + 2NO \rightarrow CO_2 + 2S + N_2$ or $CS_2 + 2NO \rightarrow CO + 2S + N_2O$

(ii) from -2 to 0

- correct products (1)
- correct equation (1)
- **both** required (1) [3]
 - [Total: 12]

	Page 3		e 3 Mark Scheme					Syllabus	Paper	,			
			GCE AS/A LEVEL – May/June 2013 9701										
2	(a)	(i) if the conditions of a system in equilibrium are changed										(1)	
			the p	position	of equilibriu	um mo	oves so as	to redu	uce that cha	nge		(1)	[2]
		(ii)	lowe	er tempe	erature							(1)	
			beca	ause the	e forward re	actior	is exother	mic				(1)	
			high	er press	sure							(1)	
			beca or there	ause the e are fe	e forward re wer molecu	actior les/m	n shows a ro oles on RH	eduction S of e	on in volume quilibrium	e		(1)	[4]
	(b)				CO ₂	+	H ₂	4	CO	+	H ₂ O		
		initi	al mo	oles	0.70		0.70		0.30		0.30		
		equ	uil. mo	oles	(0.70–x)		(0.70–x)		(0.30+x)		(0.30+x)	(1)	
		equ	uil. co	ncn.	<u>(0.70–x)</u> 1		<u>(0.70–x)</u> 1		<u>(0.30+x)</u> 1		<u>(0.30+x)</u> 1		
		$K_{\rm c} = \frac{(0.3)}{(0.7)}$		$\frac{(0+x)^2}{(0-x)^2} =$	1.44							(1)	
		give at e <i>n</i> (C	es x = equilit O ₂) =	= 0.25 prium, = <i>n</i> (H ₂) =	- 0.70 – 0.2	5 = 0.	45 moles					(1)	
		and n(C	a CO) =	<i>n</i> (H ₂ O)	= 0.3 + 0.2	5 = 0.	55 moles					(1)	[4]
												[Total:	: 10]

	Page 4	1	Mark Scheme	Syllabus	Paper	,	
			GCE AS/A LEVEL – May/June 2013	9701	23		
3	(a) (i)	He c	or Ne or Ar or Kr		(1)		
	(ii)	P or	As		(1)		
	(iii)	Br			(1)		
	(iv)	Na	allow Ar		(1)		
	(v)	Si			(1)		
	(vi)	P all	low Si		(1)		
	(vii)	Cl o	r F or Br		(1)	[7]	
	(b) (i)	any	two from P_4O_6 , SO ₂ and C l_2O_7		(1+1)		
	(ii)	Al ₂ C	D ₃ or SiO ₂		(1)		
	(iii)	MgS	SO ₃		(1)	[4]	
	(c) (i)	Si is	giant molecular/giant covalent or				
		P, S	, and C <i>l</i> are simple molecular		(1)		
	(ii)	the r	molecules are S_8 , P_4 , Cl_2		(1)		
		large	er molecules have more electrons		(1)		
		and	hence greater van der Waals' forces		(1)	[4]	
					[Total:	: 15]	

one mark for each correct compound, R, S and T

allow correct *cis* and *trans* versions of compound **T** for 2 marks (3×1)

(ii) reduction

$$NaBH_4 \text{ or } LiA \mathcal{I}H_4 \text{ or } H_2/Ni \text{ or } Na/C_2H_5OH$$
(1)

dehydration

$$P_4O_{10}/P_2O_5$$
 or H_3PO_4 or conc. H_2SO_4 or Al_2O_3 (1) [5]

(b)

Tollens' reagent	NO REACTION		
HCN	CH ₃ (CH ₂) ₄ C(OH)CH ₃ CN		
$K_2Cr_2O_7/H^+$	NO REACTION		

one mark for each correct answer (3×1) [3]

Page 6	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2013	9701	23	
(c) Na₂CO₃ or Na colou or PC <i>l</i> ₃/PC or	or NaHCO ₃ effervescence/colourless gas urless gas l_5 etc. steamy fumes (conc. H-SQ, sweet smell of ester			
or K ₂ Cr ₂ O ₇ /	'H ⁺ orange solution becomes green			
correct r	eagent		(1)	
correct c	bservation		(1)	[2]

[Total: 10]

Page 7				Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9701	23	
5	(a) (i	i)	CH ₂ =	=CHCO ₂ H		(1)	
	(ii	i)	BrCł	H ₂ CHBrCH ₂ OH		(1)	
	(iii	i)	prod	uct is HOCH ₂ CH(OH)CH ₂ OH			
			corre	ect addition across >C=C<		(1)	
			origi	nal –CH ₂ OH remains		(1)	
	(iv	')	HO ₂	CCO₂H		(1)	[5]
	(b) (i	i)	nucle	eophilic substitution		(1)	
	(ii	i)	oxida	ation		(1)	[2]
	(c) (i	i) :	step				
			H_2			(1)	
			heat	with Ni catalyst		(1)	
		:	step) []			
		i	acidi	ified K ₂ Cr ₂ O ₇		(1)	
			heat	or distil off product		(1)	
	(ii)	struc	ctural isomerism			
			func	tional group isomerism		(1)	[5]
	(d) b	oth	n oxio	dation and reduction have occurred or			
	di	ispı	ropo	rtionation has taken place		(1)	[1]
						[Total:	13]