MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/51

Paper 5 (Planning Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme GCE A LEVEL – May/June 2014	Syllabus 9701	Paper 51		
Question	Expected Answer					
1 (a) (i)	$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$ allow correct multiples					
(ii)	Ur	0.3 g MgO, 48.0 dm ³ NO ₂ , 12.0 dm ³ O ₂ nits must be given ow ecf from equation in (i)		[1]		
(b) (i)	Di	Directly heated vessel labelled (magnesium) nitrate(V) with tube at exit				
	Gas stream led into a liquid labelled alkali which will absorb the nitrogen(IV) oxide/NO_2 $$					
		ollects a gas in a syringe or over a liquid, provide onnected	ed it is properly	[1]		
		l parts of the apparatus are connected and air-tight A tide absorption precedes oxygen collection.	ND nitrogen(IV)	[1]		
(ii)		ates a collector volume with unit				
	Co wo all	ND prrect calculation of mass of magnesium nitrate(V) to build fit the stated volume of collector. Now ecf on (a)(i) hits of volume and mass required.	o a volume that	[1]		
(c)	Mass of magnesium nitrate(V) (at start) and mass of magnesium oxide (at end).					
	Or	r				
		ass of heated tube and contents before and after hea empty tube	ting and mass			
	Ma	ass of container (+ alkali) at start and mass at end		[1]		
	Vc	blume of oxygen		[1]		
(d) (i)	He	eat to constant mass OR heat to constant volume		[1]		
(ii)	Le	et the apparatus cool (to room temperature)		[1]		
(e)	A	se experimental results to produce moles of magnesiu ND moles of one of the three products. Impare with molar ratio in equation as given in (a)(i)	m nitrate(V)	[1] [1]		
(f)	all	ake sure all apparatus is airtight/no leakage before he ow other sensible suggestions regarding exposure ide or use of apparatus	-	[1]		

Page 3		Mark SchemeSyllabusGCE A LEVEL – May/June 20149701				Syllabus 9701	Paper 51
		GCE A LEVEL - May/June 2014 9701					
2	(a)	[M ⁿ⁺ (aq)] / mol dm	-3	EMF / V	log[M	ⁿ⁺ (aq)]	
		5.00 × 10 ⁻¹		0.94	-0.30		
		1.00 × 10 ⁻¹		0.96	-1.00		
		4.00 × 10 ⁻²		0.97	-1.40		
		1.00 × 10 ⁻²		0.99	-2.00		
		5.00 × 10 ⁻³		1.00	-2.30		
		2.00 × 10 ⁻³		1.01	-2.70		
		8.00 × 10 ⁻⁴		1.02	-3.10		
		2.00 × 10 ⁻⁴		1.04	-3.70		
		Correctly calculate	ed values	L			[1]
		All data to 2 decim	nal places				[1]
	(b)	All 8 points present and plotted correctly					[1]
		Best fit continuous	s straight li	ne			[1]
	(c)	There are no anor	nalous po	ints			[1]
		Variations in point	s due to ro	ounding.			[1]
		OR		-			
		Variations arise fro	om beina t	o iust 2dp.			
	(d) (i)	Appropriately drav		[1]			
	(-) (-)	Calculates correct		-			[1]
							[1]
		Uses –0.06/n = gradient to calculate n = 2 Correct working must be shown					
	(ii)	Extrapolates grap cell to a minimum e.g. (+)0.93(V)		n intercept on <i>y</i> -	axis and ded	uces E° for the	[1]
		OR					
		Calculates a value for E° using the electrode potential expression and candidate's final value for n calculated in (d)(i) or candidate's gradient and a data point on the candidate's line.					
	(e)	<i>E</i> ^e for M, (0.80 – 0 Metal is Pb (allow allow ecf from (d)	Sn on -0.				[1]

Page 4	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – May/June 2014	9701	51	
(f)	$2Ag^{+} + Pb \rightarrow 2Ag + Pb^{2+}$		[1]	
(g) (i)	To allow movement of ions OR to maintain charge / ion <u>balance</u>			
(ii)	 (ii) If lead given in (e) then only potassium nitrate is suitable If potassium chloride given as unsuitable, then accept precipitations with silver OR lead (ions) 		[1]	
			[1]	
	If potassium sulfate given as unsuitable, then accept pr lead (ions) ONLY	recipitations with		
	If tin given in (e) potassium sulfate or potassium nitrate	are suitable		
	precipitation would occur just with potassium chloride ONLY	with silver (ions)		