Cambridge
International
AS \& A Level

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CENTRE

 NUMBER

CHEMISTRY

CANDIDATE
NUMBER NUMBER \square

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Answer all the questions in the spaces provided.

1 (a) Define the term mole.
\qquad
\qquad
(b) $10 \mathrm{~cm}^{3}$ of a gaseous hydrocarbon, $\mathrm{C}_{x} \mathrm{H}_{y}$, was reacted with $100 \mathrm{~cm}^{3}$ of oxygen gas, an excess. The final volume of the gaseous mixture was $95 \mathrm{~cm}^{3}$.

This gaseous mixture was treated with concentrated, aqueous sodium hydroxide to absorb the carbon dioxide present. This reduced the gas volume to $75 \mathrm{~cm}^{3}$.

All gas volumes were measured at 298 K and 100 kPa .
(i) Write an equation for the reaction between sodium hydroxide and carbon dioxide.
\qquad
(ii) Calculate the volume of carbon dioxide produced by the combustion of the hydrocarbon.

$$
\begin{equation*}
\text { volume of } \mathrm{CO}_{2} \text { produced }= \tag{1}
\end{equation*}
$$

\qquad cm^{3}
(iii) Calculate the volume of oxygen used up in the reaction with the hydrocarbon.

$$
\text { volume of } \mathrm{O}_{2} \text { used }=
$$

\qquad cm^{3} [1]
(iv) Use your answers to (b)(ii) and (b)(iii), together with the initial volume of hydrocarbon, to balance the equation below.

$$
\begin{equation*}
. . \mathrm{C}_{x} \mathrm{H}_{y}+ \tag{2}
\end{equation*}
$$

\qquad $\mathrm{O}_{2} \rightarrow$ \qquad

$$
. \mathrm{CO}_{2}+\mathrm{zH}_{2} \mathrm{O}
$$

(v) Deduce the values of x, y and z in the equation in (iv).
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad
(c) Another hydrocarbon, \mathbf{W}, with the formula $\mathrm{C}_{4} \mathrm{H}_{8}$, reacts with hydrogen bromide, HBr , to give two products \mathbf{X} and \mathbf{Y}. \mathbf{X} and \mathbf{Y} are structural isomers of molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$.

Reaction of \mathbf{X} with aqueous alkali produces an alcohol, \mathbf{Z}, that has no reaction with acidified dichromate(VI).
(i) Give the structures and names of the compounds $\mathbf{W}, \mathbf{X}, \mathbf{Y}$, and \mathbf{Z}
W
X

Y

Z
(ii) When \mathbf{W} reacts with hydrogen bromide, more \mathbf{X} than \mathbf{Y} is produced. Explain why.
\qquad
\qquad
\qquad
\qquad
[Total: 15]

2 A sample of a hydrated double salt, $\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{x}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, was boiled with an excess of sodium hydroxide. Ammonia was given off.

The ammonia produced was absorbed in $40.0 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. The resulting solution required $25 \mathrm{~cm}^{3}$ of $0.12 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide to neutralise the excess acid.
(a) Write the ionic equation for the reaction between ammonium ions and hydroxide ions.
\qquad
(b) (i) Calculate the amount, in moles, of hydrochloric acid in $40.0 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ solution.
(ii) Calculate the amount, in moles, of sodium hydroxide needed to neutralise the excess acid. This will be equal to the amount of hydrochloric acid left in excess.
(iii) Calculate the amount, in moles, of hydrochloric acid that reacted with ammonia.
(iv) Calculate the amount, in moles, of ammonium ions in the sample of the double salt.
(v) The sample contained 0.413 g of copper. Use this information and your answer to (iv) to calculate the value of x in $\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{x}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
(vi) Calculate the M_{r} of $\mathrm{Cu}\left(\mathrm{NH}_{4}\right)_{x}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

BLANK PAGE

3 Nitrogen dioxide, NO_{2}, can enter the atmosphere in a variety of ways.
(a) (i) State one natural and one man-made source of atmospheric NO_{2}. natural man-made
(ii) Write an equation to show how NO_{2} leads to the formation of nitric acid in acid rain.
\qquad
(iii) Use equations to illustrate the catalytic role of NO_{2} in the formation of sulfuric acid in acid rain.
\qquad
\qquad
\qquad
(b) Nitrogen dioxide exists in equilibrium with dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

2.00 mol of dinitrogen tetroxide was sealed in a container at 350 K . After equilibrium had been established the total pressure was 140 kPa and the mixture of gases contained 1.84 mol of dinitrogen tetroxide.
(i) Give the expression for the equilibrium constant, K_{p}, for this equilibrium.

$$
K_{\mathrm{p}}=
$$

(ii) Calculate the number of moles of NO_{2} present at equilibrium.
(iii) Calculate the total number of moles of gas present at equilibrium and hence the mole fraction of each gas present at equilibrium.
(iv) Calculate the partial pressure of each gas present at equilibrium.
(v) Calculate the value of the equilibrium constant, K_{p}, at 350 K .

Give your answer to three significant figures and include the units.

$$
\begin{aligned}
K_{p} & =\ldots . ~
\end{aligned}
$$

4 The halogens and their compounds have a wide variety of uses and the chemical and physical properties of the elements show regular patterns related to their positions in Group VII.
(a) Chlorine, bromine and iodine all react with hydrogen.
(i) State the trend in the reactivities of the halogens with hydrogen.
\qquad
\qquad
(ii) Explain this trend in terms of bond energies.
\qquad
\qquad
\qquad
(b) In the laboratory it is not very convenient to prepare hydrogen halides from their elements.

Hydrogen halides can be prepared from their salts.
(i) Write an equation for the reaction of calcium chloride, CaCl_{2}, with concentrated sulfuric acid.
\qquad
(ii) Explain why hydrogen iodide is not prepared in this way.
\qquad
\qquad
(iii) When potassium bromide, KBr , reacts with concentrated sulfuric acid, sulfur dioxide, SO_{2}, is produced. State what you would see and write an equation for this reaction.
\qquad
\qquad
(c) (i) Give the structures of the four structural isomers of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ and identify each as primary, secondary or tertiary.
\qquad
\qquad
(ii) Name the isomer of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ that contains a chiral centre and draw the three-dimensional structures of the two optical isomers.
name
structures
(d) Aqueous silver nitrate solution was added to separate tubes containing chloroethane, bromoethane and iodoethane. The tubes were heated in a water bath.

A yellow precipitate appeared first in the tube containing iodoethane, followed by a cream precipitate in the tube containing bromoethane and finally a white precipitate appeared in the tube containing chloroethane.

Explain these observations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) (i) Give the full name of the mechanism for the reaction between aqueous sodium hydroxide and bromoethane.
\qquad
(ii) Complete the diagram below to represent this mechanism. Include all necessary curly arrows, partial charges and lone pairs.

(f) In the past, CFCs such as $\mathrm{CF}_{3} \mathrm{Cl}$ were widely used as refrigerants.
(i) State a property of CFCs which makes them suitable for use as refrigerants.
\qquad
(ii) State the damaging effect of CFCs in the upper atmosphere.
\qquad
Explain your answer.
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

