

NOVEMBER 2001

ADVANCED SUBSIDIARY LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 8701/2

CHEMISTRY (Structured Questions)

Page 1 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2001	8701	2

Question **Part** Number **Mark Scheme Details** Mark 1 (a) $1s^2$ $2s^2$ Mg ${\rm Mg}^{2+}$ $1s^2$ $2s^2$ $1s^2$ 0 $2s^2$ [2] $1s^2$ $2s^2$ (b) (i) • is Mg²⁺ 0 regular (1) \bigcirc [2] 0 cations surrounded by anions etc. (1) (ii) Two physical properties insulator ions unable to move forces between doubly charged ions are strong high m.p./b.p. insoluble in water conducts when molten [2] (1) for each (iii) Furnace linings, electrical insulators, spark plugs, ceramics [1] any two (c) (i) CO (1) and water vapour (1) [or from equations] $CaO + H_2O \rightarrow Ca(OH)_2$ (1) (ii) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O \ OR \ CaO + CO_2 \rightarrow CaCO_3 (1) \ max \ 3$ [3] [Total: 10]

2 (a) (i) Rate of forward reaction is equal to rate of backward or equivalent. (1)

energy

E_{a uncat}

activation energy mentioned (1)

two E_a peaks (1)

reaction pathway

activation energy mentioned (1)

two E_a peaks (1)

(b) (i)
$$K_c = \frac{[ester][water]}{[acid][alcohol]}$$
 (1)

(ii)

(ii) Since same number of terms in expression, top & bottom

or equivalent (1) [2]

[5]

(c) (i) ethanol = ethanoic acid = 0.43 (1) ethyl ethanoate = 0.57 (1) water = 1.57 (1)

(ii)
$$K_c = \frac{0.57 \times 1.57}{0.43 \times 0.43} = 4.84$$
 (1) [4]

[marked consequentially from (i)]

[Total: 11]

Page 2 of 3		Mark Scheme S	yllabus	Paper
		IGCSE Examinations – November 2001	8701	2
3 (a) (b)	Stron	brown liquid / vapour (1) ger van der Waals' forces between molecules (1)		[1]
(c) (i)	and h 2P +	$5Cl_2 \rightarrow 2PCl_5$ (1)	•	[2]
(ii) (iii)	NaC <i>l</i> OR	$+ 4H_2O \rightarrow H_3PO_4 + 5HCl (1)$ $! + AgNO_3 \rightarrow AgCl \downarrow + NaNO_3$ $Cl^{-}_{(aq)} + Ag^{+}_{(aq)} \rightarrow AgCl_{(s)} (1)$ $! + ANLI \rightarrow Ag(NH) \uparrow^{+} \rightarrow Cl \rightarrow QR \rightarrow Ag(NH) \downarrow Cl \rightarrow (1)$		F.43
(iv) (d) (i) (ii) (iii)	CH ₂ =	$I + 2NH_3 \rightarrow Ag(NH_3)_{2(aq)}^{+} + CI OR \text{to } Ag(NH_3)_2CI$ (1) $ICH_2 + Br_2 \rightarrow CH_2BrCH_2Br$ (1) rophilic addition (1) ron-rich double bond attracts Br_2 which is then polarised		[4]
	CH II CH	\rightarrow Br $^{\delta+}$ Br $^{\delta-}$ (1) Intermediate CH ₂ CH ₂ B	r ⁺ (1)	
		Final addition of Br ⁻		
			[Total:	12]
4 (a)	N ₂		. (1)	[2]
(b) (i) (ii) (c) (i)	gives	riple bond (high energy) needs to be broken (1) NH ₄ ⁺ directly / gives soluble N to soil (1) 10 ⁻⁹ mol dm ⁻³ (1)		[2]
(ii) (iii) (d)	lime	e H ⁺ is a product, and this is removed (1) / a base / ammonia (1) rlogged soils will contain very little oxygen / will discourage nitreria (1)		[3] [1]
(e) (i)		H		
(ii)	tetrah	nedral, 109 or $109\frac{1}{2}^{\circ}$ (1)		[2]
			[Total:	max 10]
5 (a) (i) (ii)	CH ₃ (0	$CH_2)_9CHBrCH_2Br$ (1) $CH_2)_9CHBrCH_3$ (1)		
(iii) (iv)		$CH_2)_9CO_2H$ (1) $CH_2)_9CH(OH)CH_3$ (1)		[4]

Page 3 of 3	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2001	8701	2

(b) (i) optical isomerism (1) (ii)
$$CH_3(CH_2)_9$$
 $CH_3(CH_2)_9$ $CH_3(CH_2)_9$

[Total: 9]

DNP gives red ppt (1)

Benedicts/Tollens/Fehlings positive (1)

D aldehyde only

[Total: 8]

(as C)

[2]