MARK SCHEME for the November 2004 question paper

9701 CHEMISTRY

9701/02
Paper 2 (Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9701 (Chemistry) in the November 2004 examination.

	maximum	minimum mark required for grade:			
	mark available	A	B	E	
Component 2	60	45	39	25	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 60
SYLLABUS/COMPONENT: 9701/02
CHEMISTRY
Paper 2 (Structured Questions)

1 (a) $K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
(b) $K_{\mathrm{c}}=\frac{0.274 \times 0.274}{(1.47)^{2}}=0.035$ (1)
(c) At room temperature:
iodine is a solid/solids not K_{c} expression (1)
[$\left.\mathrm{I}_{2}(\mathrm{~g})\right]$ is small/conen too small to be measured (1)
it takes longer to reach equilibrium/reaction is slower (1)
(d) (i) $\Delta H_{\text {reacn }}=\Delta H$ for bonds broken $-\Delta H$ for bonds made (1)
(ii) $2 \mathrm{H}-\mathrm{I} \rightarrow \mathrm{H}-\mathrm{H}+\mathrm{I}-\mathrm{I}$
$2 \times 299 \quad 436151$ values (1)
$\Delta H=2 \times 299-(436+151)$
$=+11 \mathrm{~kJ} \mathrm{~mol}^{-1}(1)$
(e) (i) An acid that is completely ionised (1)
(ii) $\mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{I}^{-}$
(iii) $\mathrm{I}^{-}(1)$

2 (a) $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$ (1)
(b) some answers may contain diagrams which are equivalent to the words given below
(i) $\mathrm{Al}_{2} \mathrm{O}_{3}$ has a giant structure of ions $\left(\mathrm{Al}^{3+}\right.$ and $\left.\mathrm{O}^{2-}\right)(1)$
held together by strong ionic bonds (1)
or a giant structure of atoms (1)
with strong covalent bonding throughout the lattice (1)
(2 max)
(ii) SO_{3} consists of small molecules
or is simple molecular
not simple covalent (1)
held together by weak van Waals' forces (1)
(iii) SiO_{2} is giant covalent/macromolecular
with strong covalent bonds (1)
$\mathrm{P}_{4} \mathrm{O}_{10}$ is a simple molecular (as in SO_{3}) (1)
(c) (i) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}$

$$
\begin{equation*}
\text { or } \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2} \tag{1}
\end{equation*}
$$

(ii) $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$
or $\mathrm{P}_{4} \mathrm{O}_{10}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HPO}_{3}$
or $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
[Total 10]
3 (a) (i)

outlets correctly shown
(ii) anode $2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
cathode $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})(1)$
or $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ (1)
(iii) anode Cl goes from -1 to 0 (1)
cathode H goes from -1 to 0 (1)
(iv) sodium hydroxide (answer may be on diagram) (1)
(v) manufacture of
soap detergents
paper degreasing fluids
rayon aluminium
glass dyes
bleach/NaClO/Javel/Jik/Jenola
any 2 [1]
(b) (i) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
(ii) $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
thus bonding goes form covalent to ionic
(c) (i) $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{HNO}_{3}(\mathrm{aq})$
or $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})(1)$
white ppt. forms (1)
(ii) ppt. dissolves to give colourless solution (1)
$\mathrm{AgCl}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}(\mathrm{aq})$
or $\mathrm{Ag}^{+}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq})$ (1)
Correct state symbols in either (i) or (ii) (1)

4
(a) (i) $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ (1)
(ii) 156
allow e.c.f. on (a) (i) (1)
(b) (i) primary (1)
alcohol (1)
(ii) alkene (1)
(c) carbon atom number 6 circled (1)
(d) (i)

(ii) it does not have chiral C atom (1)
(e) bromine is decolourised (1)
(f) (i)

(ii)

(iii)

or

correct addition of HBr (1)
substitution of $-\mathrm{CH}_{2} \mathrm{OH}$ by Br (1)

5 (a) (i)

(ii) nucleophilic addition (1)
(iii)

\rightarrow

$C=O$ dipole correctly shown (1)
attack on $\mathrm{C}^{\delta+}$ by CN^{-}(1)
correct intermediate/correct curly arrow on $C=O$ (1)
CN^{-}regenerated (1)
(b) (i)

(ii) hydrolysis (1)
(c) $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$
44
90
both M_{r} values correct (1)
$4.40 \mathrm{~g} \rightarrow 9.00 \mathrm{~g}$
$\%$ yield $=\frac{5.40 \times 100}{9.00}$
expression (1)
= 60\%
value (1)

