UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

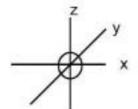
9701/02

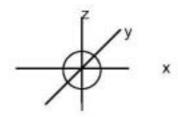
Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

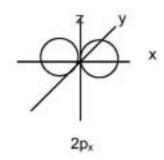
Mark schemes must be read in conjunction with the question papers and the report on the examination.


• CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	02

1 (a)



1s

2s

spherical (1)

larger spherical (1)

double lobes along the x-axis (1)

[3]

(b) (i) attraction between bonding electrons and nuclei

(1)

attraction is electrostatic

(1)

(ii) H_2 s-s **overlap** clearly shown

must not be normal dot/cross diagram

(1)

 $\mathsf{HC}\mathit{l}$ s-p **overlap** clearly shown

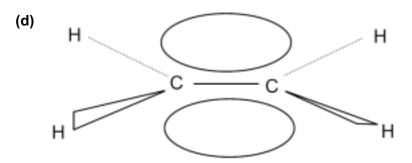
overlap must involve s and p orbitals

(1) [4]

(c) (i) bonding electrons are unequally shared or

the molecule has a dipole/ δ + and δ - ends to molecule

(1)


(ii) the H and C1 atoms have different electronegativities

or chlorine is more electronegative than hydrogen

(1)

[2]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	02

allow two 'sausages' above and below the C-C axis

or two p orbitals overlapping sideways to form one (localised) π bond over two carbon atoms

(1) [1]

(e)
$$\Delta H_f^e = 2(-393.7) + 2(-285.9) - (-1411)$$

$$= + 51.8 \text{ kJ mol}^{-1} \text{(units given in qu.)}$$

penalise errors: no 2 for -393.7 no 2 for -285.9

wrong sign for -(-1411)

[3]

[Total: 13]

2 (a)
$$P_4(s) + 10Cl_2(g) \rightarrow 4PCl_5(s)$$

or
$$2P(s) + 5Cl_2(g) \rightarrow 2PCl_5(s)$$

state symbols (1) [2]

strong ionic bonds (1)

(ii) simple molecular or discrete molecules

with weak intermolecular forces or

weak van der Waals' forces

(c) $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$

or
$$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$$

or
$$SiCl_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl$$
 (1)

	Page 4		Mark Scheme	Syllabus	Paper	r
			GCE A/AS LEVEL – October/November 2007	9701	02	
	(d) Na	aC <i>l</i> pH	is 7 allow neutral		(1)	
	PO	C <i>l</i> ₅ pH	is between 1 and 4			
	do	not a	allow acidic		(1)	[2]
	(e) (i)	460	$K \qquad A \mathit{l}_2 C \mathit{l}_6$		(1)	
		1150	OK AICI ₃		(1)	
	(ii)	corre	ect dot-and-cross diagram for A <i>l</i> C <i>l</i> ₃		(1)	
	(iii)	corre	ect displayed structure for Al ₂ Cl ₆		(1)	
		two	correct co-ordinate bonds		(1)	
		CI .	Al CI CI			[5]
					[Total	: 14]
3	(a) P ₄				(1)	
	S ₈	1			(1)	
	Ci	2			(1)	[3]
	(b) (i)	high	est S ₈ P ₄ C <i>I</i> ₂ lowest			
		allov	v S P C <i>l</i> or names		(1)	
	(ii)	from	S_8 to P_4 to Cl_2			
		there	e are fewer electrons in each molecule		(1)	
		hend	ce weaker van der Waals' forces		(1)	[3]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	02

(c) (i) $S_2Cl_2 = (2 \times 32.1) + (2 \times 35.5) = 135.2$

$$n(S_2Cl_2) = \frac{2.7}{135.2} = 0.0199 = 0.02$$
 (1)

0.02 mol $S_2Cl_2 \rightarrow \frac{0.96}{32.1}$ = 0.03 mol S

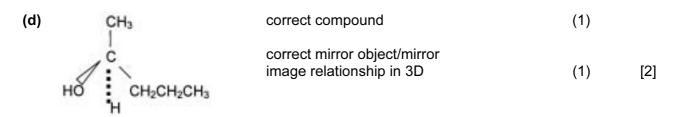
1.0 mol S₂C
$$l_2 \rightarrow \frac{0.03 \times 1.0}{0.02}$$
 = 1.5 mol S (1)

(iii) $2S_2Cl_2 + 3H_2O \rightarrow 3S + H_2SO_3 + 4HCl$

balanced equation (1) [4]

(d) oxidation product is H_2SO_3 (1)

reduction product is S (1) [2]


[Total: 12]

H atoms must be shown.

(c)
$$CH_3CH(OH)CH_2CH_2CH_3$$
 (1)

$$CH3CH2CH(OH)CH2CH3 (1) [2]$$

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	02

e.g. cyclopentane structure

allow methylcyclobutane **or** dimethylcyclopropane (1) [1]

(f) e.g.

(c) (i) CH₃I/iodomethane

two repeat units must be shown relative positions of $-CH_3$ and $-C_2H_5$ may differ from those shown above (1) [1]

[Total: 9]

(1)

- 5 (a) (i) $Cr_2O_7^{2-}/H^+$ allow MnO_4^{-}/H^+ (1)
 - (ii) from orange to or purple to colourless

 green or green/blue (1) [2]
 - (b) (i) to ensure complete oxidation of $-CH_2OH$ or to keep reactants in the reaction flask

 (ii) $CH_3CHO/ethanal$ (1) [2]
 - (ii) nucleophilic substitution **or** hydrolysis (1) [2]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9701	02

(d) step I

red P + I_2 or HI(aq) or KBr/conc H_3PO_4 or PI_3	(1)	
heat but room temperature for PI ₃	(1)	
step II		
KCN in aqueous ethanol	(1)	
in aqueous ethanol, heat under reflux	(1)	
allow aqueous ethanol in either place		
step III		
aqueous mineral acid (not nitric acid)		
or NaOH(aq) then aqueous mineral acid	(1)	
heat		[6]

[Total: 12]