MARK SCHEME for the October/November 2008 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Theory 2), maximum raw mark 100

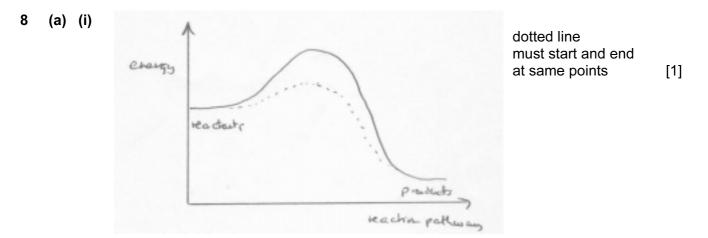
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


UNIVERSITY of CAMBRIDGE International Examinations

	Page 2					k Sche			S	yllabus	Paper		
				GCE A/AS LEVEL – October/November 2008							9701	04	
1	(a)	(i)	162 160 158 81 79	(⁸¹ E (⁷⁹ E (⁸¹ E	Br ^{- 81} Br ⁺ Br ^{- 79} Br ⁺ Br ^{- 79} Br ⁺ Br ⁺) Br ⁺))	e missin	ng charges	5			ar species lic species 5 masses	[1] [1] [1]
		(ii)		160:162 1 =1:1	2 =1:2:1								[1] [1]
	(b)	(i)	eithe	er BrCH	₂ CHBr-0	CHO or (CH2=CH	I-CH₂OH	(double bo	nd need	ded)		[1]
		(ii)		tion I: tion II:					gates – <i>so</i> A is CH ₂ =([1]
			(read	ctions c	allow an be re	LiA <i>t</i> H₄ (eversed)	or Na/e	thanol					[1]
	(c)	(i)	C ₃ H ₆	₀OBr₂ =	216, 21	8 and 22	20				(any one)	[1]
		(ii) if n	31 106 108 185 187 189 o mas	is is is is is ss numt	$\begin{array}{c} CH_2OH\\ C_2H_3^{\ 79}\\ C_2H_3^{\ 79}\\ C_2H_3^{\ 79}\\ C_2H_3^{\ 79}\\ C_2H_3^{\ 79}\\ C_2H_3^{\ 81}\\ \end{array}$	Br ₂	ignor	e <i>missing</i> 6 corre 5 corre					[4]
					g		, ,				[Tot	al: 13 max	
											-		-
2	(a)	sol	ution	will turn	ı brown/j	ourple							[1]
	(b)	tab		cas 1 2 3		<i>a</i> 1 1 1	b 1 1 2	c 0 1 2	-				
					row sco ed, a co		tical ro	w can sco	re [1]			[3 n	nax]
	(c)	rate uni	e = 6. ts are	5–7.5 × mol dn	10 ⁻⁶ n ⁻³ s ⁻¹								[1] [1]
	(d)				ed and o half-live			94s					[1] [1]

Page 3				Scheme	Syllabus	Paper
		GCE A/AS L	EVEL – O	ctober/November 2008	9701	04
so c line	order w s 1 and	/.r.t. [H ₂ O ₂] = '	1 rate (1.8)	by $0.07/0.05 = 1.4$, so does is also the increase in [H ₂ O zero order)		[1] [1]
	•	ion can be acce ers are correct	•	rking/explanation given sco	re [1]	
(f) the	first ste	ep/or the releva	ant equatic	on		[1]
						[Total: 11]
8 (a) (i)	cation	/M ²⁺ radius/siz	e increase	le down the Group/higher do s down the group/M ²⁺ charg ers less polarisation/distortio	e density decrea	
(ii)	ionic r	adii quoted:	Ca ²⁺ : 0.0 Zn ²⁺ : 0.0 Pb ²⁺ : 0.1	74 nm		[1]
	if cano		bCO₃ is m	ss stable, but PbCO ₃ to be i ore stable than $ZnCO_3$ (or c		[1] reference
(b) (i)	O = 30 C = 5.		= = =	0.91 ratios correct scores 2.26 0.45		[1]
	H = 0.		=	0.90 hence $Cu_2O_5CH_2$		[1]
(ii)	Cu ²⁺ (a	aq) <i>or</i> [Cu(H ₂ O)) ₆] ²⁺ NOT [Cu(H ₂ O) ₄] ²⁺		[1]
(iii)	D is C	uO / copper(II)) oxide			[1]
	Cu ₂ O ₅ 221	$_{5}CH_{2} \longrightarrow \longrightarrow$		$CO_2 + H_2O$		[1] (M _r s) [1]
	∴ 10	\longrightarrow	10 × 159	/221 = 7.2 g (7.19)		
	if cano	didate thinks or	nly CO ₂ is l	lost, answer will be 8.0g		[1]
(iv)		opper; F is Fe Cu ²⁺ ——→ Fe				[1] [1]
(v)	redox	/displacement				[1]
(vi)	(disso blue p	pt./solid forme lves to give) da pt. is Cu(OH) ₂ (blue is [Cu(NH ₂	ark blue/pu (s)	ırple colour v [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ NOT [(Cu(NH₃)₀]²+	[1] [1] [1] [1]
						[Total: 19]

	Page 4			Mark Scheme	Syllabus	Paper
	(-)	(1)		GCE A/AS LEVEL – October/November 2008	9701	04
4	. ,	.,		=CH–CH ₂ CH ₂ CH ₃ accept C ₃ H ₇ on RHS		[1]
		(ii)	8			[1]
	(b)	(i)	e.g.	$C_{40}H_{82} \longrightarrow C_{16}H_{34} + 2 C_{12}H_{24} \text{ OR } C_{24}H_{48}$		[1]
		(ii)		t + catalysts/SiO ₂ /A <i>l</i> ₂ O ₃ /Pt/ceramic/pumice/zeolite etc mp given >500 °C		[1]
	(iii)	bono bono	ds broken: 4(C–C) = 4 × 350 = 1400 kJ d formed: 2 (C=C) = 2 × 610 = 1220 kJ ∴∆H = +180 kJ	mol ⁻¹ mol ⁻¹ J mol ⁻¹	[1]
			from	n eqn in (i) : +90 kJ mol ⁻¹ for each C=C formed (could i	be multiples of 90,	
	(iv)	endo	othermic reactions $\Delta H > 0$		[1]
						[Total: 6]
5	(a)			tromethylbenzene trophenylethanoic acid		[1] [1]
	(b)	step	o II:	Cl_2 + light <i>or</i> heat (T~100 °C) (A <i>l</i> Cl ₃ or aq. no	egates)	[1]
		step	o III:	KCN (in ethanol) + heat (T~75°C) (HCN negates))	[1]
		step	o V:	Sn or Fe + HC <i>l</i> (+ heat)		[1]
						[Total: 5]
6	(a)			aqueous iodine (NaOH/I₂) (allow NaOI) /ellow ppt; K gives no reaction		[1] [1]
	(b)	aqu	ieous	bromine / Cu ²⁺ aq / diazotisation with phenol		[1]
		Lgi	ives r	no change; M decolourises/gives white ppt. [⁺] L goes blue, M goes green		
		with	n diaz	otisation L gives no reaction, M a coloured compound		[1]
	(c)	dro	p of v			[1]
		or a	add A	zes/gives off steamy fumes; P has no reaction $gNO_3(aq)$		[1] <i>[1]</i>
		or a	add N	ves rapid ppt.; P gives ppt. very slowly IH ₃ /RNH ₂		[1] [1]
		or a	add al	ves off fumes; P has no reaction lcohol/phenol		[1] [1]
			N pr	oduces sweet-smelling liquid, P gives no reaction		[1]
	(d)			al Indicator solution/litmus		[1]
		u, s	nows	s no change; R will turn solution blue (alkaline)		[1] [Total: 8]

	Pa	ge 5		Mark Scheme	Syllabus	Paper
				GCE A/AS LEVEL – October/November 2008	9701	04
7	(a)	proi	tein: I	polymer of amino acids / amino acids are monomers.		[1]
	(b)	at le	east o	of at least two amino acids joining by the loss of water one peptide bond drawn out in full ormula of the tripeptide		[1] [1] [1]
	(c)			HC <i>l</i> etc. <i>or</i> alkali/OH⁻/NaOH_NOT conc H₂SO₄ or any /reflux if temp given >90 °C	HNO3	[1] [1]
	(d)	(i)	six			[1]
		(ii)	•	= $3 \times 75 + 2 \times 89 + 2 \times 165 - 6 \times 18$ = 625 w [1] for M_r = 733) o ecf from (i))		[1] [1]
						[Total: 9]

(ii)	protein/polypeptide NOT polymer/polyamide	[1]
(iii)	they are denatured/lose their 2°/3° structure/or H-bonds/vdW	[1]

(b) (i) competitive inhibitor resembles the substrate OR competes for the active site of the enzyme [1]

non-competitive inhibitor can bind to a different site on the enzyme OR forms a covalent bond/bonds permanently with the enzyme [1]

Page		llabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	04
(ii)			
	<u>∧</u>		
	readin Vanne		
	We T		
	π		
	subshele		
	cace here		
	mark for each line NB lines must cross to score mark for II		[2 ×
(c) (i)	–S–H groups (allow sulphide/S/cysteine residue)		
(ii)	this inhibits/reduces/decreases the enzyme activity/stops normal	function	
	the bonding disrupts the 3-dimensional structure of the enzyme		
			[Total: [/]
(a) (i)	cut DNA into sections / fragments / minisatellites		
(ii)	these undergo electrophoresis OR are placed on agarose gel		
(iii)	radioactive phosphorus / ³² P OR darkens photographic film		
(b) (i)		ows positior	
	and/or carbon atoms X-ray crystallography shows the positions of most atoms in struc	ture / allows	:
	measurement of bond length		,
(ii)	different types of tissue have protons in different chemical enviro	onments / tu	mour and
	healthy tissue absorb differently / allow at different frequencies		
(c) (i)	M : M+1 = 48 : 1.7		
	$x = 100 \times 1.7$ = 3.2 hence there are 3 carbon atoms in the complete the complete the second		
	1.1 × 48 NB if calculation shown 1.1 divisor MUST be pr	resent	
	since the compound has an m/e of 73 and contains 3 carbon ato 1 oxygen atom, $y = 73-(36 + 14 + 16) = 7$	ms, 1 nitrog	en atom a
(ii)	the NMR spectrum shows a quartet, triplet pattern characteristic	of an ethyl g	
	the other broad peak must be due to N–H protons		
	thus the structure of the compound is likely to be		
	CH ₃ CH ₂ CONH ₂		

[Total: 11 max 10]

Page 7		,	Mark Scheme	Syllabus	Paper		
			GCE A/AS LEVEL – October/November 2008	9701	04		
10	(a) (i)		vorm – hydrogen bonds er – van der Waals' OR hydrogen bonds		[1 [1		
	(ii)	(ii) spider silk is more elastic/flexible/less rigid than silkworm silk/has a lower density silkworm silk absorbs water more easily					
	(iii)	this i	ncreases the elasticity/hydrophobic nature of the silk		[1		
	(b) (i)	ano	lymer formed with the elimination/formation of a small	molecule			
	(5) (1)	•	xample)	molecule	[1		
	(ii)	anya	addition polymer e.g. poly(ethene), PVC, etc.		[1		
	(iii)	addi conc a w conc	m: tion polymers have a limited range of bonds/monomer tion polymers are non-polar/have fewer/no H-bonds lensation polymers/proteins have a range of combinativide range of properties lensation polymers/proteins have more functional grou rent sequences of amino acids result in different 2°/3°	ons of amino ac ps/sidechains	[1 [1 iids which give [1 [1 [1		

[Total: 12 max 10]