MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22 Paper 22 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version	Syllabus	Pap	er	
			GCE A/AS LEVEL – October/November 2009	9701			
1		CO ₂ van SiO ₂	is simple molecular/simple covalent/has discrete molecules has induced dipole – induced dipole interactions/ der Waals' forces/weak intermolecular forces 2 is giant molecular/giant covalent/macromolecular 2 has strong covalent bonds	5	(1) (1) (1) (1) [any		
	. ,	mini i.e.	mum is 4-valent Si-O and at least one Si-O-Si		(1) (1)		
						[2]	
	(c)		for an ideal gas, any four from the following the molecules behave as rigid spheres there are no/negligible intermolecular forces between the molecules collisions between the molecules are perfectly elastic the molecules have no/negligible volume the molecules move in random motion the molecules move in straight lines the kinetic energy of the molecules is directly proportional to the temperature the pressure exerted by the gas is due to the collisions between the gas molecules and the walls of the container not an ideal gas obeys $pV = nRT$	(r	(1) (1) (1) (1) (1) (1) (1) (1) max 4)		
	(• •	there are intermolecular forces between CO_2 molecules/ CO_2 molecules have volume		(1)	[5]	
	(d)	grap	hite has delocalised electrons		(1)	[1]	
	(e)		$SiO_2 + 2C \rightarrow SiC + CO_2$ or $SiO_2 + 3C \rightarrow SiC + 2CO$		(1)		
	((ii)	diamond because SiC is hard		(1)	[2]	
					[Tota	al: 13]	

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	22

2 (a) (i)

formula o	of chloride	NaC1	MgCl ₂	AlCl ₃	SiC14	PCl ₃	SCl ₂	
oxidation	number of element in the chloride	+1	+2	+3	+4	+3	+2	
(ii)	 correct oxidation nos. for NaCl to SCl₂ (ii) Na to Al loss of outer/valence electrons to give configuration of Ne/to complete octet Si to S gain or sharing of outer electrons to give configuration of Ar/to complete octet 			((1) (1) (1) (1) (1) 			
(b) (i)	giant lattice (may be in diagram) with strong ionic bonding					(1) (1)		
(ii)	ionic					(1)		
(iii)	-1					(1)	
(iv)	+ _ : Na : [×] . H 							
	correct numbers of electrons correct charges						1) 1)	

(v)

compound	MgH_2	A <i>t</i> H ₃	PH_3	H_2S
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_2 and AlH_3 correct oxidation nos. for PH_3 and H_2S

(c) (i)

chloride	sodium	magnesium	aluminium
pН	7	6.5–6.9	1–4
	(no mark)	(1)	(1)

(1)

(1)

(1) (1)

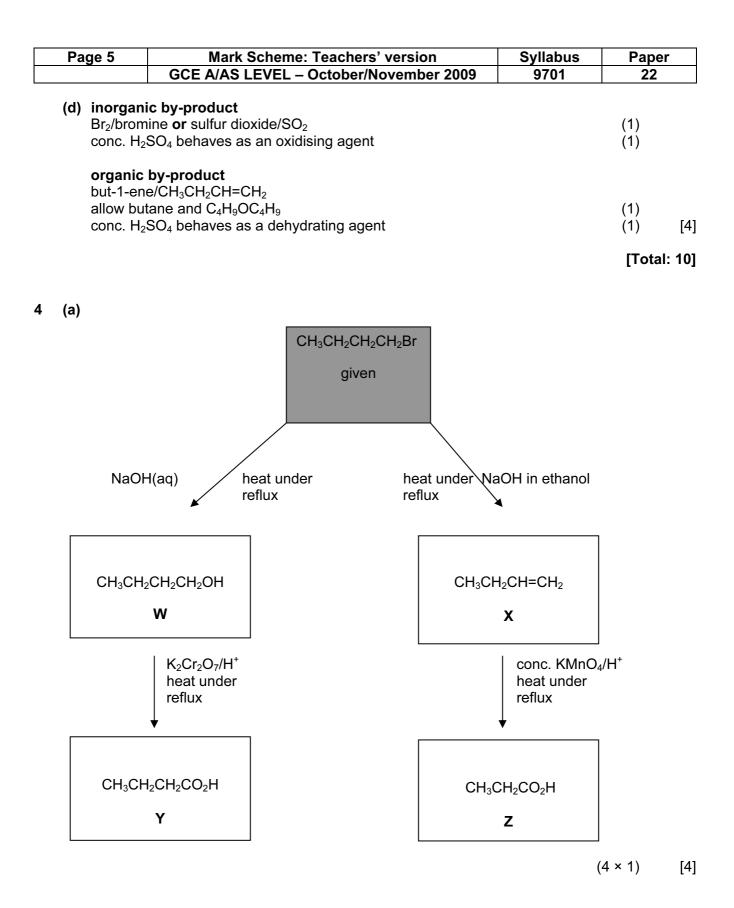
(iii) 10–14

[4]

[8]

	Page 4	Mark Scheme: Teachers' version	Syllabus	Pape	er
		GCE A/AS LEVEL – October/November 2009	9701	22	
	(d) (i) cova	alent		(1)	
	SiC	$\begin{array}{rcl} l_4 + 4H_2O &\rightarrow & \text{Si}(OH)_4 + 4HCl \text{ or} \\ l_4 + 4H_2O &\rightarrow & \text{Si}O_2.2H_2O + 4HCl \text{ or} \\ l_4 + 2H_2O &\rightarrow & \text{Si}O_2 + 4HCl \end{array}$		(1)	[2]
				[Tota	l: 19]
3	., .	$\begin{array}{rcl} NaBr+H_2SO_4 & \rightarrow & NaHSO_4+HBr\\ 2NaBr+H_2SO_4 & \rightarrow & Na_2SO_4+2HBr\\ C_4H_9OH+HBr & \rightarrow & C_4H_9Br+H_2O \end{array}$		(1) (1)	[2]
		$= n(\text{HBr}) = \frac{35}{103} = 0.34$		(1)	
	<i>n</i> (C₄H ₉ O	(H) = $\frac{20}{74}$ = 0.27		(1)	
	NaBr/HE	Br is in an excess – no mark just for this answer			[2]
	C₄H ₉ OH if yield is	1, using mass $\equiv C_4H_9Br$ $\approx 100\%$, $H_9OH \rightarrow 137 \text{ g } C_4H_9Br$			
	15.4 g C	$_{4}H_{9}OH$ would produce $\frac{137 \times 15.4}{74} = 28.5 \text{ g C}_{4}H_{9}Br$		(1)	

% yield =
$$\frac{22.5 \times 100}{28.5}$$
 = 78.9 (1)


or methods using moles

method 2

$$n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208$$

for 100% yield n(C_{4}H_{9}Br) would be 0.208 × 137 = 28.5g (1)
% yield = $\frac{22.5 \times 100}{28.5} = 78.9$ (1)

method 3

$$n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208 \text{ mol}$$

for 100% yield n(C₄H₉Br) would be 0.208 mol
actual n(C₄H₉Br) = $\frac{22.5}{137} = 0.164 \text{ mol}$ (1)
% yield = $\frac{0.164 \times 100}{0.208} = 78.8$ (1) [2]

© UCLES 2009

Page 6	Mark Scheme: Teachers' versionSyllabusGCE A/AS LEVEL – October/November 20099701	Pape 22	r
(b) (i) X allov	w ecf on any alkene above	(1)	
(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
allov	w ecf on any alkene above	(1)	[2]
		[Tota	al: 6]
5 (a) 2,4-dinitr	rophenylhydrazine or aqueous alkaline iodine	(1)	
yellow-or	range-red ppt. yellow ppt.	(1)	[2]
· · /	ss gas evolved or Na dissolves + Na $\rightarrow C_4H_9ONa + \frac{1}{2}H_2$	(1) (1)	[2]
(c) (i) CH₃	CH ₂ CH ₂ CH ₂ CH ₂ OH	(1)	
(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(iii)	ОН		
		(1)	[3]
(d) (i) pent	tan-2-ol	(1)	
(ii)			
	CH ₃ CH ₂ CH=CHCH ₃ CH ₃ CH ₂ CH ₂ CH=CH ₂		
	product 1 product 2		

$CH_3CH_2CH=CHCH_3$	$CH_3CH_2CH_2CH=CH_2$
product 1	product 2

(1 + 1) [3]

Page 7			hers' version	Syllabus	Pape	r
	GCE A/AS LEV	EL – Octol	ber/November 2009	9701	22	
(e) (i)						
	CH₃ I					
H ₃ C	CH₃ │ ──C──CH₂OH │					
	∣ CH₃	or	CH ₃ C(CH ₃) ₂ CH ₂ OH		(1)	
(ii)						
	CH ₃					
H₃C	CH₃ │ ──C──CO₂H │					
	 CH₃					
	UT 13	or	CH ₃ C(CH ₃) ₂ CO ₂ H			
allov	v ecf on (e)(i)				(1)	[2]

[Total: 12]