MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9701 CHEMISTRY
 9701/31 Paper 31 (Advanced Practical Skills), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	31

Question	Sections	Indicative material	Mark	
1 (a)	PDO layout	Two balance readings and mass of FA 1 clearly recorded for each experiment. (Data for $2^{\text {nd }}$ experiment could be on page 4) Examiner to check subtraction for each experiment - no penalty in this section but see section (e)	1	[1]
(b)	PDO Recording MMO Collection	If the candidate has only performed one experiment the following points only can be awarded: (ii), (iii), (vi), (vii) and (x). (i) Single table recording observations for both experiments. Times at $1 / 2$ minute intervals. (ii) Appropriate headings and units Allow times in minutes (min) or seconds (iii) All temps recorded to nearest $0.5^{\circ} \mathrm{C}$ (Must be more than one at .5 as well as .0) (iv) Some temps recorded before mixing and some after mixing for each expt.	1	
If the candidate performs one experiment only, the following marks may not be awarded: (i) (iv) (viii) \& (ix) (xi)		Candidate records initial temperature and at least three temperatures after mixing for each experiment (v) First temperature after mixing is clearly taken 1 minute after adding the zinc powder (Examiner judgement re temperatures recorded before mixing / temperatures only recorded after mixing) and cooling for at least 5 minutes after recorded maximum temperature.	1	
	For Supervisor - calculate mean maximum ΔT to nearest $0.5^{\circ} \mathrm{C}$; calculate mean of time taken (to nearest $1 / 2 \mathrm{~min}$) to reach max temperature after mixing.			
	MMO Quality	(vi) \& (vii) $1^{\text {st }}$ expt. Compare ΔT with Supervisor. award (vi) and (vii) if within $2^{\circ} \mathrm{C}$ award (vii) only if $>2^{\circ} \mathrm{C}$ and $\leq 5^{\circ} \mathrm{C}$ (viii) \& (ix) $2^{\text {nd }}$ expt. Compare ΔT with Supervisor. award (viii) and (ix) if within $2{ }^{\circ} \mathrm{C}$ award (ix) only if $>2^{\circ} \mathrm{C}$ and $\leq 5^{\circ} \mathrm{C}$ (x) $\left(1^{\text {st }}\right.$ expt) \& (xi) ($2^{\text {nd }}$ expt). Compare time after mixing at which max temp is obtained with same time for Supervisor, for each expt. If Supervisor $\leq 3 \mathrm{~min}$; 1 mark for Δ time $\leq 1 \mathrm{~min}$. If Supervisor $>3 \mathrm{~min} ; 1 \mathrm{mark}$ for Δ time $\leq 1 \frac{1}{2} \mathrm{~min}$.	2 2 2 1 1	[11]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	31

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	31

Question	Sections
(f)	ACE Conclusions
(g)	ACE Interpretation

Where candidate has given a maximum temperature in (g), allow use here (ecf). Also allow use of ΔT calculated in this section.
(i) the 1:1 mole ratio from the equation and
(ii) the relative moles of Cu^{2+} and $\mathrm{Zn}(\mathrm{s})$ used, as calculated in (e)
If candidate states that "more moles of zinc were present" and this fits the calculated values in (e) - accept as the relative statement.

Shows $(25 \times 4.3 \times$ candidate mean $\Delta \mathrm{T}$) with appropriate unit, J or kJ , on final answer.
(Allow use of 4.2 or 4.18 without penalty)
Award this mark for the correct expression and unit OR where the expression is not shown, a correct evaluation of that expression and unit

(h)	ACE Interpretation	No mark is awarded in this section if there is no division by (moles of zinc) or by (moles of Cu^{2+}). Calculates \qquad moles of reagent not stated as being in excess in (f) If (moles of zinc) is used in this expression, candidate may use either value from (e) or the mean of the (moles of zinc). Examiner evaluates the candidate expression which should be: (i) correctly rounded for sig fig displayed, (allow variation of ± 1 on $3^{\text {rd }}$ significant figure) (ii) have a -ve sign on the final answer; (iii) be correctly converted to kJ	1 1	[2]
(i)	ACE Interpretation	Candidate identifies one source of error in the experiment. This must be related to: Apparatus used or method described - no human error allowed. Heat loss is most likely error to be seen Accept reference to the graduation (precision) of the thermometer.	1	[1]
(j)	ACE Improvement	Answer must follow on from (i) Suggests a way in which method could be improved e.g. Use of a lid or increased insulation to minimise heat loss.	1	[1]
Qn 1	Total			[26]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	31

Question	Sections	Indicative material	Mark	
FA 3 is $\mathrm{MnSO}_{4}(\mathrm{~s})$; $\quad \mathrm{FA} 4$ is $\mathrm{PbCO}_{3}(\mathrm{~s}) ; ~ \mathrm{FA} 5$ is $\mathrm{CuCO}_{3}(\mathrm{~s})$				
2 (a)	MMO Collection MMO Decisions	As FA 5 is heated, observes: green or blue solid turning black, or green/blue (solid) turning to a black solid or residue Tests gas given off with: Ignore results limewater, in any of a glowing (not burning) splint, these tests red litmus paper	1	[2]
(b)	MMO Collection	Observes each of the following: colourless solution with FA 3 or colourless solution with FA 4, and blue or green solution with FA 5 and observation of a gas evolved with FA 4 or with FA 5. [Second mark from (a) may be awarded here if not already given in (a)]	1	[1]
(c)	ACE Conclusion	Identifies carbonate in FA 4 or FA 5 and refers to carbon dioxide; providing there has been evidence in the tests: a positive test with limewater, or effervescence with dilute acid or Identifies carbonate in FA 4 or FA 5 and refers to specific test for carbon dioxide and its result in the conclusion.	1	[1]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	31

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	31

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Sections \& Indicative material \& Mark \& \\
\hline (e) \& \begin{tabular}{l}
MMO Decisions \\
MMO Collection
\end{tabular} \& \begin{tabular}{l}
If no pair of ions is given in (d), no mark can be awarded in this section \\
Mark consequentially \\
Selects appropriate reagent to distinguish between any pair of cations identified in (d). \\
For \(\mathrm{Pb}^{2+} / \mathrm{Al}^{3+}\) accept \(\mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{KI}\) or chromate/dichromate \\
The candidate should name a reagent, e.g. potassium dichromate. \\
If \(\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\), or dichromate is given as the reagent the (aq) state symbol must also be given or reference made to an aqueous solution of the ions. \\
If selected reagent is suitable; mark consequentially for chosen reagent and \(\mathrm{Pb}^{2+}\). \\
For \(\mathrm{Pb}^{2+} / \mathrm{Al}^{3+}\) \\
FA 4 gives white precipitate with HCl and with \(\mathrm{H}_{2} \mathrm{SO}_{4}\) and yellow precipitate with chromate/dichromate or iodide. Ignore any conclusion.
\end{tabular} \& 1

1 \& [2]

\hline (f) \& | MMO Collection |
| :--- |
| ACE Conclusions | \& | Observes as only reaction: |
| :--- |
| FA 3 gives white precipitate with $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ which is insoluble in dilute nitric acid, but Ignore any white ppt or cloudiness with FA 3 and silver nitrate, and ignore cation precipitates on adding $\mathrm{NH}_{3}(\mathrm{aq})$ |
| Accept a dash in the boxes for reaction of FA 3, FA 4 and FA 5 with barium nitrate and with silver chloride as evidence of "no reaction" with that reagent A conclusion that fits observations for |
| (i) barium chloride with all solutions |
| or |
| (ii) silver nitrate with all solutions | \& 1

1 \& [2]

\hline Qn 2 \& Total \& \& \& [14]

\hline
\end{tabular}

