MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 41 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE A/AS LEVEL – October/November 2009	9701	41	
1) co	_: si	gas (at room temperature); SiO ₂ is a high melting solic imple / discrete molecular / covalent iant covalent <i>or</i> macromolecular / giant molecular	1	[1] [1] [1] [3]	
			ance that is) hard, high melting, electrical insulator s strong covalent bonds (can be in (a))	any two	[1] [1] [2]	
	(c) (i)	amp	hoteric		[1]	
	(ii)	(ii) 2NaOH + PbO \longrightarrow Na ₂ PbO ₂ + H ₂ O		[1]		
		(or N	$AOH + PbO + H_2O \longrightarrow NaPb(OH)_3 etc.)$		[2]	
	(d) (i)	Zn -	+ $\operatorname{Sn}^{4+} \longrightarrow \operatorname{Zn}^{2+} + \operatorname{Sn}^{2+}$		[1]	
	(ii)	E ^θ = E ^θ =	= 0.15 - (-0.76) = 0.91 V = 1.52 - 0.15 = 1.37 V		[1] [1]	
	(iii)	n(Sn	n^{2+}) = 0.02 × 13.5/1000 × 5/2 = 6.75 × 10⁻⁴ mol	use of the 5/2		
		n(Sn	n^{2+}) = 0.02 × 20.3/1000 × 5/2 = 1.02 × 10 ⁻³ mol	correct rest of	working [1] [1]	
	(iv)	•	$(1^{4+}) = 1.02 \times 10^{-3} - 6.75 \times 10^{-4} = 3.45 \times 10^{-4} \text{ mol}$		[1]	
			$\begin{array}{llllllllllllllllllllllllllllllllllll$	culation, but allo	w ecf) [1] [8]	
	(e) (i)	volu	me = $1 \times 1 \times 1 \times 10^{-5}$ = 1×10^{-5} m ³ or 10 cm ³		[1]	
	(ii)		s = vol × density = 10 × 7.3 = 73 g es = mass/A _r = 73/119 = 0.61 mol		ecf [1] ecf [1]	
	(iii)	Q =	nFz = 0.61 × 9.65 × 10 ⁴ × 2 = 1.18 (1.2) × 10 ⁵ coul	ombs	ecf [1]	
					[4]	

[Total: 19]

	Page 3					Syllabus 9701			
2	(a) Ca	²⁺ (g)	[1] [1]						
	(b) Ca	F ₂ and	d CaS both have	e larger lattice	energies (t	than CaCl ₂)		[1]	
	(i)	F⁻ is	smaller than Cl	_				[1]	
	(ii)	S²−i	is more highly ch	narged than C	F			[1] [3]	
	(c) LE		[178 + 590 + 115 ✓ 2260 (kJ mol ^{−1})	50] – [244 – 2 ✓	× 349] – 79	l6 signs√		[3] [3]	
	(d) (i)	Ca C H O	= 28.2/40.1 = 25.2/12 = 1.4/1 = 45.1/16	= 0.703 = 2.10 = 1.4 = 2.82	$\begin{array}{ccc} \Rightarrow & 1 \\ \Rightarrow & 3 \\ \Rightarrow & 2 \\ \Rightarrow & 4 \end{array}$	(1 marł	< for initial step	of calc'n)	
			formula is Ca	$C_3H_2O_4$		(1)		[2]	
	(ii)	malo	onic acid must be	e C ₂ H ₄ O ₄ , i.e.	CH₃(CO₂H)	₂ (must b	e structural)	[1] [3]	
								[Total: 10]	
3	ligh ele col	nt is al ctron	s split into two / o bsorbed is promoted fron bserved is the co	n a lower to a	higher leve		any 3	3 points [3] [3]	
	(b) (i)	[Cu([Cu([H ₂ O) ₆] ²⁺ is pale b [NH ₃) ₄ (H ₂ O) ₂] ²⁺ i	blue s deep / dark	blue <i>or</i> purp	ble		[1] [1]	
	(ii)		ause it has a largause λ_{\max} is in th	-	•	-		[1] [1]	
	(iii)		we will have $λ_{max}$ maximum $ε_0$ in t			00 nm		[1] [1] [6]	
	(c) (i)	K _c =	[CuCl ₄ ^{2–}]/([Cu ²⁺]][Cl [−]] ⁴)	uni	ts are mol ^{−4} c	dm ¹²	[1] + [1]	
	(ii)	[CuC	Cl ₄ ^{2–}]/[Cu ²⁺] = K	$f_{c}[Cl^{-}]^{4} = 672$	(no units)			[1]	
								[3] [Total: 12]	

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2009	9701	41
4	(a)	(cyclohe due to O	xanol & phenol) hydrogen bonding to (solvent) water r H group	nolecules	[1] [1] [2]
			le anion is more stable (than cyclohexoxide) / OH bon elocalisation of charge / lone pair over the ring	d is weaker	[1] [1] [2]

(c)			
	reagent	product with cyclohexanol	product with phenol
	Na(s)	RONa <i>or</i> RO⁻Na⁺	ArONa <i>or</i> ArO⁻Na⁺
	NaOH(aq)	no reaction	ArONa <i>or</i> ArO⁻Na⁺
	Br ₂ (aq)	no reaction	tribromophenol
	I₂(aq) + OH⁻(aq)	no reaction	no reaction
	an excess of acidified $Cr_2O_7^{2-}(aq)$	cyclohexanone	no reaction

5 × [1] 5 [2]

five correct "no reaction"s (4 correct = [1]; 3 correct = [0])

five correct products

[7]

(d) *either* Br₂(aq): no reaction with cyclohexanol; decolourises *or* white ppt with phenol

or $Cr_2O_7^{2-} + H^+$: turns from orange to green with cyclohexanol; no reaction with phenol

- correct reagent chosen **and** the correct "no reaction" specified [1]
 - correct positive observation [1]
 - [2]
 - [Total: 13]

	Page 5		5	Mark Scher	me: Te	eachers' version		Syllabus	Paper
				GCE A/AS LEVE	L – Oc	tober/November	2009	9701	41
5	(a)	.,	II:	KMnO ₄ heat with H ⁺ or OH ⁻ SOCl ₂ or PCl ₅ or PCl ₅	•	(NOT aq)			[1] [1] [1]
		(11)	-[-C0	O-C ₆ H ₄ -CO-NH-C ₆ H ₄ -	-NH-J-	(Peptide bond m	iust de d	isplayed for mini	m) [1] [4]
	(b)	(i)	CH₃	NHCO-C ₆ H ₄ -CONHC	H ₃	(1 mark for each of	end)		[1] + [1]
		(ii)		$CH_2CH_2O-CO-C_6H_4-C$ the polymer -[- OCH_2					for [1] for [2] [4 max 3]
	(c)	(i)	Cl⁻ ⁺	$^{\dagger}\mathrm{NH}_{3}\mathrm{-C}_{6}\mathrm{H}_{4}\mathrm{-NH}_{3}^{+}\mathrm{CI}^{-}$	(1 m	nark for each end)			[1] + [1]
		(ii)	H ₂ N	$-C_6H_2Br_2-NH_2 \text{ or } H_2N-$	-C ₆ H ₂ E	Br ₃ -NH ₂ <i>or</i> H ₂ N-C ₆ I	Br₄-NH₂		[1] [3]
	(d)	I:		D₂ (<i>or</i> NaNO₂ + HCI/H < 10ºC	₂ SO ₄)				[1] [1]
		II:	•	rop-2-yl phenol, (CH₃) aOH(aq))₂CH-C	C ₆ H ₄ OH			[1] [1] [4]
	(e)	(i)	A sp	pecies having positive	and n	egative ionic cent	res / chai	rges, with no ove	erall charge [1]
	(ii) -O ₂ C-C ₆ H ₄ -NH ₃ ⁺								[1] [2]
									[Total: 16]

	Page 6		Mark Scheme: Teachers' version	Syllabus	B Pa	aper
			GCE A/AS LEVEL – October/November 2009	9701		41
6 (Ť١	wo ami	amino acids correctly paired no acids correctly paired elled H-bond between strands		(2) (1) (1)	[3]
([b) (i	— Ca	A – each amino acid has its own specific / appropriate arry amino acids to ribosomes / mRNA ontains a triplet code / anticodon	tRNA	(1) (1) (1)	
	(ii)	•	some – attaches / moves along / binds to mRNA semble amino acids in correct sequence for / synthesis	ses protein	(1) (1)	[5]
((c) (i)) Bas	e miscopied / deleted		(1)	
	(ii)	This	uence of bases is changed may result in different amino acid sequence – differen affect shape / tertiary structure of protein	t protein	(1) (1) (1)	[Max 3]
				[Total: 12	max 11]

	Page 7		,	Mark Scheme: Teachers' version	Syllabus	Pape	r
				GCE A/AS LEVEL – October/November 2009	9701	41	
7	(a)	(i)	Posi	tions of atomic nuclei / atoms		(1)	
		(ii)	Insu	fficient electrons / electron density / electron cloud (arc	ound H atom)	(1)	[2]
	(b)		• •	rstallography can show the geometry of the arrangeme between atoms / shape of atoms	ent of atoms /	(1)	
		This can help explain how e.g. enzymes work (any reasonable example)		(1)	[2]		
	(c)	(i)	Nucl	ear spin		(1)	
		(ii)	(If M	: M+1 gives a ratio 15 : 2)			
			Ther	$hx = \frac{100 \times 2}{1.1 \times 25} = 7$		(1)	
			Sing	le peak at 3.7 δ due to –O-CH $_3$		(1)	
			Sing	le peak at 5.6 δ due to phenol / OH		(1)	
			1,2,1	I peak at 6.8 δ due to hydrogens on benzene ring		(1)	
			Patte	ern suggests 1,4 subsitution		(1)	
			(x =	7,) y = 8, z = 2		(1)	
			Com	pound is 4-methoxylphenol		(1) Max 5	[6]
						[Tota	l: 10]

	Pa	Page 8		Mark Scheme: Teachers' version	Syllabus		Paper
				GCE A/AS LEVEL – October/November 2009	9701		41
8	(a)	Graphite / graphene					
	(b)	The	ey do	not exist as sheets / layers of carbon atoms		(1)	
	(c)		•	ths of nanotubes are much shorter than the curvature so small that they are not effected by rolling	of the paper /	(1)	
	(d)	Any	y molt	en ionic salt (or plausible organic ionic compounds)		(1)	[Total: 4]
9	(a)	(i)	Cova	alent / co-ordinate		(1)	
		(ii)	Mec	hlorethamine – binds the two chains together – prevents unravelling		(1) (1)	
			Cis-	platin – binds to two Gs / bases in one chain – so they are not available for base pairing		(1) (1)	
							[Total: 5]