MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9701 CHEMISTRY
9701/41 Paper 41 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

1 (a) CO_{2} is a gas (at room temperature); SiO_{2} is a high melting solid
CO_{2} : simple / discrete molecular / covalent
SiO_{2} : giant covalent or macromolecular / giant molecular
(b) (a substance that is..) hard, high melting, electrical insulator any two
(c) (i) amphoteric
(ii) $2 \mathrm{NaOH}+\mathrm{PbO} \longrightarrow \mathrm{Na}_{2} \mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(or $\mathrm{NaOH}+\mathrm{PbO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaPb}(\mathrm{OH})_{3}$ etc.)
(d) (i) $\mathrm{Zn}+\mathrm{Sn}^{4+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Sn}^{2+}$
(ii) $E^{\theta}=0.15-(-0.76)=0.91 \mathrm{~V}$
$E^{\theta}=1.52-0.15=1.37 \mathrm{~V}$
(iii) $\mathrm{n}\left(\mathrm{Sn}^{2+}\right)=0.02 \times 13.5 / 1000 \times 5 / 2=6.75 \times 10^{-4} \mathrm{~mol}$
use of the $5 / 2$ ratio
$\mathrm{n}\left(\mathrm{Sn}^{2+}\right)=0.02 \times 20.3 / 1000 \times 5 / 2=1.02 \times 10^{\mathbf{- 3}} \mathbf{~ m o l}$
(iv) $\mathrm{n}\left(\mathrm{Sn}^{4+}\right)=1.02 \times 10^{-3}-6.75 \times 10^{-4}=3.45 \times 10^{-4} \mathrm{~mol}$
\therefore ratio $=6.75 / 3.45=1.96: 1 \approx 2: 1$
\therefore formula is $2 \mathrm{SnO}+\mathrm{SnO}_{2} \Rightarrow \mathrm{Sn}_{3} \mathbf{O}_{4} \quad$ (condl on calculation, but allow ecf)
(e) (i) volume $=1 \times 1 \times 1 \times 10^{-5}=1 \times 10^{-5} \mathrm{~m}^{3}$ or $10 \mathrm{~cm}^{3}$

(iii) $Q=n F z=0.61 \times 9.65 \times 10^{4} \times 2=1.18(\mathbf{1 . 2}) \times 10^{5}$ coulombs ecf
[Total: 19]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

2 (a) $\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{~s})$
(b) CaF_{2} and CaS both have larger lattice energies (than CaCl_{2})
(i) F^{-}is smaller than Cl^{-}
(ii) S^{2-} is more highly charged than Cl^{-}
(c) LE $=-[178+590+1150]-[244-2 \times 349]-796$ $=-2260\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(d) (i) $\mathrm{Ca}=28.2 / 40.1=0.703 \quad \Rightarrow 1$
$C=25.2 / 12 \quad=2.10 \quad \Rightarrow 3$
$H=1.4 / 1 \quad=1.4 \quad \Rightarrow 2 \quad$ (1 mark for initial step of calc'n)
$O=45.1 / 16 \quad=2.82 \quad \Rightarrow 4$
formula is $\mathrm{CaC}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$
(ii) malonic acid must be $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{4}$, i.e. $\mathrm{CH}_{3}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$ (must be structural)
[Total: 10]

3 (a) d-orbitals split into two / different levels light is absorbed electron is promoted from a lower to a higher level colour observed is the complement of the colour absorbed $\mathrm{E}=\mathrm{hf}$
any 3 points
[3]
(b) (i) $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { is pale blue }} \\ & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} \text { is deep / dark blue or purple }}\end{aligned}$
(ii) because it has a larger absorbance peak or a larger ε_{0} value
because $\lambda_{\text {max }}$ is in the visible region (hence more visible light is absorbed)
(iii) curve will have $\lambda_{\text {max }}$ between $>600 \mathrm{~nm}$ and 800 nm
with maximum ε_{0} in between the other two
(c) (i) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CuCl}_{4}{ }^{2-}\right]\left(\left[\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{4}\right) \quad\right.$ units are $\mathrm{mol}^{-4} \mathrm{dm}^{12} \quad[1]+[1]$
(ii) $\left[\mathrm{CuCl}_{4}{ }^{2-}\right] /\left[\mathrm{Cu}^{2+}\right]=\mathrm{K}_{\mathrm{c}}\left[\mathrm{Cl}^{-}\right]^{4}=672$ (no units)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

4 (a) (cyclohexanol \& phenol) hydrogen bonding to (solvent) water molecules due to OH group
(b) phenoxide anion is more stable (than cyclohexoxide) / OH bond is weaker due to delocalisation of charge / lone pair over the ring
(c)

reagent	product with cyclohexanol	product with phenol
$\mathrm{Na}(\mathrm{s})$	RONa or $\mathrm{RO}^{-} \mathrm{Na}^{+}$	ArONa or $\mathrm{ArO}^{-} \mathrm{Na}^{+}$
$\mathrm{NaOH}(\mathrm{aq})$	no reaction	ArONa or $\mathrm{ArO}^{-} \mathrm{Na}^{+}$
$\mathrm{Br}_{2}(\mathrm{aq})$	no reaction	tribromophenol
$\mathrm{I}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	no reaction	no reaction
an excess of acidified $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$	cyclohexanone	no reaction

> five correct products
> five correct "no reaction"s
> $(4$ correct = [1]; 3 correct = [0])
$5 \times[1]$
(d) either $\mathrm{Br}_{2}(\mathrm{aq})$: no reaction with cyclohexanol; decolourises or white ppt with phenol or $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}^{+}:$turns from orange to green with cyclohexanol; no reaction with phenol correct reagent chosen and the correct "no reaction" specified correct positive observation
[Total: 13]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

5
(a) (i) $\begin{array}{ll}\text { I: } & \mathrm{KMnO}_{4} \\ & \text { heat with } \mathrm{H}^{+} \text {or } \mathrm{OH}^{-} \\ \text {II: } & \mathrm{SOCl}_{2} \text { or } \mathrm{PCl}_{5} \text { or } \mathrm{PC}_{3}\end{array}$ [1]
II: SOCl_{2} or PCl_{5} or PCl_{3} (NOT aq)
(ii) -[-CO-C $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}-\mathrm{NH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}-\right]-\quad$ (Peptide bond must be displayed for minm)
(b) (i) $\mathrm{CH}_{3} \mathrm{NHCO}_{6} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CONHCH}_{3}$ (1 mark for each end)

$$
[1]+[1]
$$

$\begin{array}{ll}\text { (ii) } \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH} & \text { for [1] } \\ \text { or the polymer }-\left[-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CO}-\right]- & \text { for [2] }\end{array}$
(c) (i) $\mathrm{Cl}^{-}{ }^{+} \mathrm{NH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-} \quad$ (1 mark for each end)
(ii) $\mathrm{H}_{2} \mathrm{~N}^{-\mathrm{C}_{6}} \mathrm{H}_{2} \mathrm{Br}_{2}-\mathrm{NH}_{2}$ or $\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{3}-\mathrm{NH}_{2}$ or $\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{Br}_{4}-\mathrm{NH}_{2}$
(d) I: $\mathrm{HNO}_{2}\left(\right.$ or $\left.\mathrm{NaNO}_{2}+\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4}\right)$
at $\mathrm{T}<10^{\circ} \mathrm{C}$
$\begin{array}{lll}\text { II: } \\ \begin{array}{ll}\text { m-prop-2-yl phenol, }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH} \\ +\mathrm{NaOH}(\mathrm{aq})\end{array} & \text { [1] } \\ \text { [1] }\end{array}$
(e) (i) A species having positive and negative ionic centres / charges, with no overall charge [1]
(ii) $-\mathrm{O}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{3}{ }^{+}$
[Total: 16]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

6 (a) All three amino acids correctly paired

(2)

Two amino acids correctly paired
One labelled H -bond between strands
(b) (i) tRNA - each amino acid has its own specific / appropriate tRNA

- carry amino acids to ribosomes / mRNA
- contains a triplet code / anticodon
(ii) ribosome - attaches / moves along / binds to mRNA
- assemble amino acids in correct sequence for / synthesises protein
(1)
[5]
(c) (i) Base miscopied / deleted
(ii) Sequence of bases is changed

This may result in different amino acid sequence - different protein Can affect shape / tertiary structure of protein
(1) $[\operatorname{Max} 3]$
[Total: 12 max 11]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

7 (a) (i) Positions of atomic nuclei / atoms
(ii) Insufficient electrons / electron density / electron cloud (around H atom)
(b) X-ray crystallography can show the geometry of the arrangement of atoms / bonding between atoms / shape of atoms

This can help explain how e.g. enzymes work (any reasonable example)
(c) (i) Nuclear spin
(ii) (If $\mathrm{M}: \mathrm{M}+1$ gives a ratio $15: 2$)

Then $\mathrm{x}=\frac{100 \times 2}{1.1 \times 25}=7$
Single peak at 3.7δ due to $-\mathrm{O}-\mathrm{CH}_{3}$
Single peak at 5.6δ due to phenol / OH
$1,2,1$ peak at 6.8δ due to hydrogens on benzene ring
Pattern suggests 1,4 subsitution
$(x=7) y=8,, z=2$
Compound is 4-methoxylphenol
(1) Max 5
[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2009	9701	41

8 (a) Graphite / graphene
(b) They do not exist as sheets / layers of carbon atoms
(c) The lengths of nanotubes are much shorter than the curvature of the paper / they are so small that they are not effected by rolling
(d) Any molten ionic salt (or plausible organic ionic compounds)
[Total: 4]

9 (a) (i) Covalent/ co-ordinate
(ii) Mechlorethamine - binds the two chains together

- prevents unravelling

Cis-platin - binds to two Gs / bases in one chain

- so they are not available for base pairing
[Total: 5]

