

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CHEMISTRY		9701/34
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

Paper 34 Advanced Practical Skills

October/November 2009

2 hours

Candidates answer on the Question Paper.

As listed in the Confidential Instructions Additional Materials:

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 9 and 10.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use							
1							
2							
3							
Total							

This document consists of 9 printed pages and 3 blank pages.

BLANK PAGE

1 Read through question 1 before starting any practical wor	1	Read through o	uestion 1 l	before starting	any practical	work
---	---	----------------	-------------	-----------------	---------------	------

For Examiner's Use

You are provided with the following reagents.

- **FB 1**, hydrated copper(II) sulfate
- **FB 2**, aqueous copper(II) sulfate
- FB 3, aqueous sodium thiosulfate
- FB 4, aqueous potassium iodide
- FB 5, starch indicator solution

The formula of hydrated copper(II) sulfate is $CuSO_4$. $\mathbf{x}H_2O$ where \mathbf{x} shows the number of molecules of water of crystallisation present.

The value of x can be found by two different methods.

Method 1 involves heating to drive off water of crystallisation while **Method 2** uses a titration to determine the concentration of $Cu^{2+}(aq)$.

(a) Method 1

- Weigh a crucible and record the mass.
- Add between 2.50 g and 2.70 g of FB 1 and record the new mass.
- Place the crucible containing **FB 1** on a pipe clay triangle and heat gently for about four minutes with a Bunsen burner.
- Allow the crucible to cool. You should continue with Method 2 while the crucible is cooling.
- Weigh the crucible and its contents.

Record all masses in the space below.

[3]

(b) Calculate the mass of water lost and the mass of copper(II) sulfate that remained after heating.

mass of water lost = g

mass of copper(II) sulfate remaining =g

[1

(c)	Use your answer to (b) to calculate how many moles of water were lost and the moles of
(-)	copper(II) sulfate, CuSO ₄ , remaining after heating.
	Show all of your working.
	[A _r : Cu, 63.5; H, 1.0; O, 16.0; S, 32.1]

The hydrated copper(II) sulfate	te contained	mol of water	
and	mol of CuSO ₄ .		[2

(d) Use your answer to (c) to determine the value of \boldsymbol{x} in the formula of hydrated copper(II) sulfate, CuSO₄. \boldsymbol{x} H₂O.

x =[2]

(e) Method 2

- Fill the burette with **FB 3**, aqueous sodium thiosulfate.
- Pipette 25.0 cm³ of **FB 2** into a conical flask and use a measuring cylinder to add 10 cm³ of **FB 4**.
- Titrate this solution with FB 3 from the burette until the mixture becomes yellowbrown. Do not add too much FB 3 at this stage.
- An off-white precipitate is also present in the flask and this will mask the colour of the solution.
- Add approximately 1 cm³ of FB 5. The solution will become blue-black as a starch iodine complex is formed.
- Continue the titration until the blue-black colour of the complex just disappears leaving the off-white precipitate.
- Perform sufficient further titrations to obtain accurate results.
- Record your titration results in the space below. Make certain that your recorded results show the precision of your working.

i	
ii	
iii	
iv	
v	
vi	
vii	
viii	
ix	
x	
хi	

For Examiner's Use

Summary

Show which results you used to obtain the value of the volume of **FB 3** by placing a tick (\checkmark) under the readings used in your results. [11]

(f)	(i)	In Method 1 a student was advised to carry out all weighings using the same balance. What type of error might be introduced if more than one balance was used?	For Examiner's Use
		[1]	
	(ii)	In Method 2 , 10cm^3 of FB 4 was added during the titration process. Assume that the measuring cylinder used could be read to \pm 0.5 cm ³ . Calculate the percentage error in the measurement of this volume.	
		% error [1]	
(g)		thod 1 is usually less accurate than Method 2 for finding the value of \boldsymbol{x} in the formula hydrated copper(II) sulfate, CuSO ₄ . \boldsymbol{x} H ₂ O.	
		roup of students carried out Method 1 correctly but calculated a value of 4 for \boldsymbol{x} . The value for \boldsymbol{x} is 5.	
	-	ggest an error in the practical procedure of the experiment that could account for this erence.	
		[1]	
(h)		ggest a modification that could be made to the practical procedure in Method 1 to uce this error.	
	Exp	plain why this modification should give an answer nearer to 5.	
	mod	dification	
	exp	lanation	
		[2]	
		[Total: 24]	
			1

2 In this question you should use information from the Qualitative Analysis Notes on pages 9 and 10.

For Examiner's Use

(a) Solutions FB 6, FB 7 and FB 8 are known to be either chlorides or sulfates of aluminium, magnesium or calcium. The addition of aqueous sodium hydroxide and aqueous ammonia can be used to give information about the cation present.

Add NaOH(aq) and NH₃(aq) separately to each of the solutions FB 6, FB 7 and FB 8.

Rinse and reuse test-tubes where possible.

Record both the tests and your observations in an appropriate form in the space below.

ш		
	i	
	ii	
	iii	
	iv	
	v	
	vi	
	vii	

From	your	observations	identify	the	solutions	containing	aluminium,	magnesium	and
calciu	m ion	s. In each cas	se give e	vide	nce to sup	port your a	nswer.		

Solution contains the aluminium ion.
supporting evidence
Solution contains the magnesium ion. supporting evidence
Solution contains the calcium ion.
supporting evidence[7]

For Examiner's Use

(b)	Choose a pair of reagents that, used together, would identify which solution or solutions contain(s) the sulfate ion.														
	Carry observ				and	record,	in	the	space	below,	the	reagents	used	and	the
						The	sulfa	ate ic	on is pre	esent in					[2]
														[Tota	ıl: 9]

3 (a) You are to carry out the tests given in the table below on solid FB 9.

For Examiner's Use

[Total: 7]

Record details of any gases that are released in the reactions. These gases should be identified by a test, **described in the appropriate part of the table**.

No additional tests should be attempted.

	test	observations	
(i)	Place a spatula measure of FB 9 in the small hard-glass test-tube labelled FB 9 and heat the solid strongly.		
(ii)	To 1 cm depth of aqueous sodium hydroxide in a boiling-tube, add 1 spatula measure of FB 9 , then		
	gently heat the mixture, do not boil		
	Care is needed when heating aqueous sodium hydroxide.		
(iii)	To 1 cm depth of aqueous sodium hydroxide in a boiling-tube, add 1 spatula measure of FB 9 and a piece of aluminium foil,		
	then		
	gently heat the mixture.		
	Care is needed when heating aqueous sodium hydroxide.	[4]	
(b)	What elements must be present in FB 9 to give the results you have obtained in test (ii) and test (iii)?		
(c)	What is the function of the aluminium foil in test (iii)?		
		[1]	
(d)	Do not carry out this test What would you expect to see if 1 cm depth of dilute hydrochloric acid was added to spatula measure of FB 9?		
		[1]	

Qualitative Analysis Notes

Key: [ppt. = precipitate.]

1 Reactions of aqueous cations

	reaction with	
	NaOH(aq)	NH ₃ (aq)
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO_3^{2-}	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow soln turns orange with H+(aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble In NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ (aq)	${ m NH_3}$ liberated on heating with ${ m OH^-(aq)}$ and ${ m A}l$ foil, ${ m NO}$ liberated by dilute acids (colourless ${ m NO}$ \rightarrow (pale) brown ${ m NO_2}$ in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acid); gives white ppt. with Pb ²⁺ (aq)
sulfite, SO ₃ ²⁻ (aq)	SO_2 liberated with dilute acids; gives white ppt. with $Ba^{2+}(aq)$ (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.