MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/23
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	23

1 (a) atoms of the same element / with same proton (atomic) number / same number of protons (1) different numbers of neutrons / nucleon number / mass number (1)
(b)

isotope	no. of protons	no. of neutrons	no. of electrons
${ }^{24} \mathrm{Mg}$	12	12	12
${ }^{26} \mathrm{Mg}$	12	14	12

each correct row (1)
(c) $A_{r}=\frac{24 \times 78.60+25 \times 10.11+26 \times 11.29}{100}$
$=\frac{1886.40+252.75+293.54}{100}$
gives 24.33 to 4 sig fig (same as data in question)
do not credit wrong number of sig figs or incorrect rounding up/down (1)
(d) $\mathrm{Mg}+\mathrm{Cl}_{2} \rightarrow \mathrm{MgCl}_{2}(1)$
(e) (i) $n(\mathrm{Sb})=\frac{2.45}{122}=0.020(1)$
(ii) mass of Cl in $\mathrm{A}=4.57-2.45=2.12 \mathrm{~g}$ (1)
$n(\mathrm{Cl})=\frac{4.57-2.45}{35.5}=\frac{2.12}{35.5}=0.06$
allow ecf as appropriate (1)
(iii) $\mathrm{Sb}: \mathrm{Cl}=0.02: 0.06=1: 3$
empirical formula of \mathbf{A} is SbCl_{3} (1)
(iv) $2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SbCl}_{3}(1)$
(f) (i) ionic (1)
(ii) covalent (1)
not van der Waals' forces

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	23

2 (a) $1 \quad \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}(1)$
$2 \quad 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3} \quad \begin{aligned} & \text { equation (1) } \\ & \text { equilibrium sign (1) }\end{aligned}$
$3 \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ or
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ (1)
(b) condition $1 \quad 400-600^{\circ} \mathrm{C}(650-900 \mathrm{~K})(1)$
condition 2 1-10 atm/just above atmospheric pressure allow equivalent pressure units (1)
condition 3 vanadium pentoxide/vanadium (V) oxide $/ \mathrm{V}_{2} \mathrm{O}_{5}(1)$
(c) fertilisers/phosphates/ammonium sulfate or lead/acid batteries or paints/pigments or dyestuffs or steel pickling or metal treatment or detergents or explosives (1)
(d) (i) $2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
(ii) $\begin{array}{llll}\mathrm{H}_{2} \mathrm{~S} & -2 & \mathrm{SO}_{2}+4 \quad \mathrm{~S} 0 & \text { all three (1) }\end{array}$
SO_{2} because the oxidation number of S is reduced (1)
(e) (i) $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ (1)
$\mathrm{SO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{SO}_{3}+\mathrm{NO}(1)$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
final product must be $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1)
(ii) corrosion of buildings or dissolving of $\mathrm{A} \mathrm{l}^{3+}$ ions from soil or pollution of rivers/killing aquatic life or making soil acidic/killing trees/corrosion of metals (1)
(f) it is a reducing agent/inhibits oxidation (1)

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	23

3 (a) (i) order of atoms must be $\mathrm{C}-\mathrm{C}-\mathrm{O}$

$$
\begin{equation*}
{ }_{x}^{x} C_{o}^{x} C_{0}^{\circ} 0_{0}^{0} \tag{1}
\end{equation*}
$$

linear (1)
(ii) a molecule or atom with an unpaired electron or a species formed by the homolytic fission of a covalent bond (1)
(iii) molecule has 2 bond pairs and one lone pair (1)
and one unpaired electron (1)
these may be shown in a diagram
(b) (i)

allow the structural formula $-\mathrm{CH}_{2} \mathrm{CH}(\mathrm{CN}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{CN})-$ (1)
(ii) addition (1)
(c) (i) $\mathrm{CH}_{3} \mathrm{CHO}(1)$
(ii)

(d)

reagent	product
Br_{2} in an inert solvent	$\mathrm{BrCH}_{2} \mathrm{CHBrCHO}$
$\mathrm{NaCN}+$ dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{CH}_{2}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CN}$ allow $\mathrm{CH}_{2}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$
Tollens' reagent	$\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}$ or $\mathrm{CH}_{2}=\mathrm{CHCO}_{2}^{-}$
NaBH_{4}	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL - October/November 2010	9701	23

4 (a) $\mathrm{C}: \mathrm{H}: \mathrm{Br}=\frac{29.3}{12}: \frac{5.7}{1}: \frac{65.0}{79.9}$

$$
\begin{equation*}
=2.44: 5.7: 0.81 \tag{1}
\end{equation*}
$$

$$
=3: 7: 1 \text { (1) }
$$

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}=(3 \times 12)+(7 \times 1)+79.9=122.9$
use of 122.9 or 123 to prove molecular formula must be $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ (1)
(b) (i) mechanism must be $\mathrm{S}_{\mathrm{N}} 2$
dipole on $\mathrm{C}-\mathrm{Br}$ bond or
central C atom shown with $\delta+(1)$
attack on C atom by lone pair of OH^{-}
not from negative charge (1)
transition state formed with negative charge shown (1)
Br^{-}leaves $/ \mathrm{NaBr}$ formed (1)
(ii) $\mathrm{C}_{2} \mathrm{H}_{4} /$ ethane (1)
(iii) ethanol/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (1)
(iv) elimination (1)
(c) (i)

(ii) must be skeletal

5 (a) AgCl/silver chloride (1)
(b) white (1)
(c) 1-iodobutane (1)
(d) C-I bond is weaker/longer than the other C-halogen bonds (1)

C-I bond energy is $240 \mathrm{~kJ} \mathrm{~mol}^{-1}$
or covalent radius of I is 0.133 nm (1)

