MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2		Mark Scheme: Teachers' version GCE A/AS LEVEL – October/November 2010	Syllabus 9701	Paper 43
1	(a) (i)		$_{5}$ + 3H ₂ O \rightarrow 2H ₃ PO ₄ (or similar) or P ₄ O ₁₀ + 6H ₂ O \rightarrow 4 + H ₂ O \rightarrow H ₂ SO ₃ (1)		
	(ii)	2NC	$D_2 + H_2O \rightarrow HNO_2 + HNO_3(1)$		
	(iii)	2C <i>1</i> 0	D_2 + 2NaOH \rightarrow NaC lO_2 + NaC lO_3 + H ₂ O or ionic eqn	(1)	[4]
	(b) (i)		$H_4 + C_2H_6 + H_2S + 9O_2 \rightarrow 4CO_2 + SO_2 + 8H_2O$ nulae (1), balanced (1)		
	(ii)	•	e SO ₂ produced) causes acid rain (1) onsequence of acid rain – defoliation etc. – or respirato	ry problem	
	(iii)	this M _r (e	0 dm ³ contains 50 dm ³ of H ₂ S is 50/24 (= 2.083 moles) (1) thanolamine) = 24 + 7 + 14 + 16 = 61 efore mass = 2.083 × 61 = 127(.1) g (1) (or ecf)		
	(iv)	acid	-base (1)		
	(v)	= {(; =	= ∆H _f (rhs) – ∆H _f (lhs) 3 × 11 – 2 × 242)}{–}{(2 × –21 – 297)} –1 for each { } ii 451 + 339	n which there is a	
		= _^	112 (kJ mol ⁻¹) (2)		[8]
					[Total: 12]
2	<u>col</u> whe	rbitals <u>our</u> du en e p	e from: s / sub-shells / energy levels are <u>split</u> or equivalent * (1 ue to <u>absorption of light</u> (1) promoted to higher orbital * (1) or hv or h / λ (marks * could be in labelled diagram) (1))	[3]
	liga ((N	nd ex H ₄) ₂ C	$\frac{Cu(H_2O)_6]^{2+}}{Cu(H_2O)_6]^{2+}}$ (or full correct name of ion) (1) (change/displacement/replacement (1) $CuCl_4$ contains) [CuCl_4]^{2-} (1) (cucl_4 contains) igands (1)		[max 3]
	(c) n(th	nio) =	= $0.02 \times 19.5/1000 = 3.9 \times 10^{-4} \text{ mol } (1)$		
	SO	[Cu ²⁺]	= $n(Cu^{2^+})$, so $n(Cu^{2^+})$ in 50 cm ³ = 3.9×10^{-4} mol = $3.9 \times 10^{-4} \times 1000/50$ = (7.8 × 10⁻³ (mol dm ⁻³)) (1) -one-line: $n(thio) = n(Cu^{2^+})$, so $[Cu^{2^+}] = 0.02 \times 19.5/50$		l dm ⁻³)} (2)
			n^3 , there will be 7.8 × 10 ⁻⁴ mol, which is 63.5 × 7.8 × 10 f on 2nd and 3rd marks 0.5 gets 2 marks only	$D^{-4} = 0.049 - 0.0$	50 % (1) [3]
					[Total: 9]

	Page 3	Mark Scheme: Teacher		Syllabus	Paper
		GCE A/AS LEVEL – October/	November 2010	9701	43
3		I: reduction or hydrogenation (1) II: oxidation or redox (1)			[2]
	(b) thymol: or or menthol: or menthon	Br ₂ (aq) (1) NaOH(aq) (1) FeC l_3 (aq) (1) Cr ₂ O ₇ ²⁻ /H ⁺ (1) Lucas test or ZnC l_2 /HC l (1) e: 2,4-DNPH/Brady's reagent (1)	decolourises or wh dissolves (1) violet/purple (colou orange \rightarrow green (1 cloudy or white ppt orange ppt (1)	r) (1))	[6]
					[Total: 8]
4	reaction I: reaction III: reaction IV: reaction V: reaction VI: reaction VII:	$\frac{Cl_2}{P} + \text{light (1) (not aq)}$ Br ₂ + AlBr ₃ or Fe or FeBr ₃ (1) (NaOH, heat in ethanol (1) (allo HNO ₃ + H ₂ SO ₄ (1) conc and < 6 KMnO ₄ + H ⁺ /OH ⁻ + heat (1) Sn + HCl (1) HNO ₂ + HCl, < 10°C (1)	w aqueous EtOH)		[
	X is		H (1)allow –N ₂ — an	d –ONa	[max 8]
					[Total: 8]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	43

- 5 (a) (i) $2H_2O 4e \rightarrow 4H^+ + O_2(1)$
 - (ii) $2Cl^{-}-2e \rightarrow Cl_{2}(1)$
 - **(b)** (i) $E^{\circ} = (1.23 (-0.83)) = 2.06V$ (1)
 - (ii) $E^{\circ} = (1.36 (-0.83)) = 2.19V (1)$ (in (i) if (a)(i) as $4(OH^{-}) - 4e \rightarrow 2H_2O + O_2$ ecf is 0.4 - (-0.83) = 1.23 (1) - needs working shown) [2]
 - (c) (i) <u>no change</u> (because [H₂O] does not change) (1) smaller/less positive (1)
 - (ii) The (overall) $\underline{E^{\circ}}$ for CL production will decrease, (whereas that) for $\underline{O_2}$ production will stay the same. (answer could be in terms of 1st E° decreasing and becoming lower than 2nd)(or E° for CL becomes less than for O_2) (1) [3]
 - (d) (i) $Cl^{-} + 3H_2O \rightarrow ClO_3^{-} + 3H_2(1)$
 - (ii) $n(C) = 250 \times 60 \times 60 = (9 \times 10^5 C) (1)$ $n(e^-) = 9 \times 10^5/96500 = 9.33 mol$ $n(NaClO_3) = 9.33/6 = (1.55 mol) - allow ecf (1)$ $Mr(NaClO_3) = 106.5$ mass $(NaClO_3) = 1.55 \times 106.5 = 165.5 g (1) (165 - 166 gets 3 marks, 993 gets 2 marks$ as ecf) [4]

[Total: 11]

[2]

Pa	Page 5			Mark	Schem	ne: Teac	hers' vei	rsion		Syllabus		Paper
			GC	E A/AS	LEVEL	– Octob	er/Nove	mber 2010)	9701		43
6 (a)	(i)	Br ₂ (ignore	solvent	, but do	not cred	it A <i>l</i> C <i>l</i> ₃ o	r HC <i>l</i> or lig	ht) (1)			
	(ii)	anot	her or		ing Br-B	r bond. (d (not Br ^{ŏ−})	(1)			[max 3]
(b)	C is E is	NCC C <i>l</i> CC Dw (C	CH₂ĊH OCH₂(H ₂ NH ₂ (1 ₂ CN (1) CH ₂ COC r C ₂ H ₄ .	; l (1)	orrect atc	oms in ar	ny order on	LHS b	out order n	nust b	[3] e correct on
(c)					• •	, ,	• /	C <i>l</i> (conc) or r LiA <i>l</i> H₄ or		, . ,)	[2]
(d)	NH_4	ı⁺(1)										[1]
(e)	(i)	(allo	w (CH	₂) ₄ and (CH ₂) ₂)	OCH₂CF)				
	(ii)	HC1	(1)									[2]
(f)	(i)	[H⁺]	= 10 ^{-p}	^H = 10 ⁻	^{2.6} = 2.	51 × 10 ⁻³	³ (mol drr	^{−3}) (1)				
	(ii)	Ka =	= [H ⁺] ²	$^{2}/c = 6.$	31 × 10 ⁻	^{–5} (mol dı	m ^{−3}) (allo	w ecf from	(i)) (1)			[2]
												[Total: 13]
7 (a)	NH_2	$_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH$	CH₂CF	$I_2 N H_3^+ C$	Cl [−] + HC		[−] NH ₃ +Cł	NH₃ ⁺ C <i>l</i> [−] (1 H₂CH₂CH₂N ℩ H⁺)	,	l ⁻ (1)		[2]
(b)	star stee	ts at ep po	11.3 a rtions	nd finish at 10 cm	າed as 1 າ ³ and 2	.6 (1) 0 cm ³ vol	lume ado	led (1)				[2]
												[Total: 4]

	Page 6		6	Mark Sch	neme: Teachers' version	Syllabus	Paper
				GCE A/AS LEV	/EL – October/November 2010	9701	43
8	(a)	(i)	diag	ram to show tetrah	edral arrangement (3D or bond ang	le marked) (1)	
		(ii)	4 co	valent bonds/bond	pair <u>s</u> (with C <i>l</i>) only or no lone pai	r s . (1)	[2]
	(b)	(i)	(fum	es are) HCl (from h	s <i>or</i> heat evolved (1) ydrolysis of Sn-C <i>l</i> bonds) <i>or</i> exotherr rk for HC <i>l</i> (<u>g)</u> in eqn.)	nic reaction/bond	breaking (1)
		(ii)	SnC	$l_4 + 2H_2O \rightarrow SnO$	₂ + 4HC <i>l</i> etc. (allow partial hydrolys	is and with OHs) (1) [3]
							[Total: 5]
9	(a)	Su	gar/de	eoxyribose, phosph	ate, base (or better)(<u>not</u> ribose) (1)		[1]
	(b)	Dia	Igram	showing sugar-pho	osphate backbone (chain) (1)		
				n side-chain (1) ired – A-T or G-C (1	1)		
		H-b	onds	shown and labelle	d (1)		[4]
	(c)	mR	RNA, r	ibosome, tRNA	all three correct (2) (mRNA first allow 1 mark)		[2]
	(d)	(i)	(4 ×	4 × 4) = 64 (1)			
	 (ii) START (or Met) – ser – arg – leu – asp – val (2) (5 correct order score (1)) 						
		(iii)	Amiı	no acid leu is chan	ged to pro (1)		[4]
							[Total: 11]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	43

- 10 (a) (i) Partition substance is distributed between the stationary and mobile phase or has different solubility in each phase (1)
 Adsorption substances form bonds of varying strength with or are attracted to or are held on to stationary phase. (1)
 - (ii)

Technique	Separation method
Paper chromatography	Partition
Thin-layer chromatography	Adsorption
Gas/liquid chromatography	Partition

 $\begin{array}{l} 3 \text{ correct } \rightarrow (2) \\ 2 \text{ correct } \rightarrow (1) \end{array}$

- (iii) %**X** = 44% (±2) %; %**Y** = 56% (±2%) (1)
- (b) (i) They are largely composed of (carbon and) hydrogen which are active in the NMR (owtte) or protons/H⁺/H exist in <u>different chemical environments</u> (with characteristic absorptions) (1)
 - (ii) 2 correct displayed formulae (1)

In propanone all the protons are in a similar chemical environment (and hence there will be one proton peak.) (1)

In propanal there are (three) <u>different chemical environments</u> and hence there will be (three) <u>proton peaks</u> or three different chemical environments or three proton peaks (1) [4]

[Total: 9]

[5]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	43

11 (a) Any two from:

The drug can be localised in a part of the body (1) Smaller doses can be given reducing cost (1) Smaller doses can be given with fewer possible side effects (1) More immediate action / acts faster (1)

(b)

(May circle whole functional group) Any 2 circles (2)

[2]

[2]

- (c) (i) Must not react with the drug *or* must not breakdown too easily/quickly (1)
 - (ii) The swelling/hydrolysis would begin in the stomach (and the drug would be released too soon) *or* stomach is acidic or has low pH (1) [2]
- (d) Addition, condensation (1)Suitable equation for addition (1)Suitable equation for condensation (1)

(Addition equation <u>must</u> show polymeristion <u>and</u> balance – allow $nX \rightarrow X_{2n}$ or X_n or $X_{n/2}$) (Condensation can be simple reaction e.g. to single ester or amide but must balance – 2 products)

(If polymerisation RHS must show a repeat unit but can leave out other product – HCl etc.)

(e) Hydrolysis (1)

[1]

[3]

[Total: 11]