UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		GCE AS/A LEVEL – October/November 2011	9701	22	
(a) (i) mas	s of C = $\frac{12 \times 0.352}{44}$ = 0.096g		(1)	
	n(C)	= 0.096 = 0.008		(1)	
(ii)) mas	s of H = <u>2 × 0.144</u> = 0.016g 18		(1)	
	n(H)	= 0.016 = 0.016		(1)	
(iii)) mas	s of oxygen = 0.240 – (0.096 + 0.016) = 0.128g		(1)	
	n(O)	= 0.128 = 0.008 16		(1)	
	allov	v ecf at any stage			[6]
(b) C	: H : O	= 0.008: 0.016 : 0.008 = 1:2:1			
al	low C :	H: O = $\frac{0.096}{12}$: $\frac{0.016}{1}$: $\frac{0.128}{16}$ = 1:2:1			
gi	ves C l	H_2O		(1)	[1]
(c) (i) M _r	$= mRT = \underbrace{0.148 \times 8.31 \times 333}_{\text{DV}} = \underbrace{1.01 \times 10^5 \times 67.7 \times 10^{-6}}$		(1)	
		= 59.89			
	allov	v 59.9 or 60		(1)	
(ii)) C ₂ H,	₄ O ₂		(1)	[3]
(d) C	H ₃ CO ₂ I	-1		(1)	
H	CO ₂ CF	3		(1)	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

(1)

[Total: 13]

[1]

Page 2

(e) the only products of the reaction are the two oxides H2O and CO2 and copper

$g) \rightarrow S^{+}(g) + e^{-}$ rrect equation rrect state symbols om Na to Ar, ectrons are added to the same shell/have same shielding ectrons are subject to increasing nuclear charge/proton number ectrons are closer to the nucleus or atom gets smaller Mg and A l	(1) (1) (1) (1) (1)	[2
ectrons are added to the same shell/have same shielding ectrons are subject to increasing nuclear charge/proton number ectrons are closer to the nucleus or atom gets smaller Mg and A1	(1)	[3]
in Mg outermost electron is in 3s and in A <i>l</i> outermost electron is in 3p	(1)	
3p electron is at higher energy or is further away from the nucleus or is more shielded from the nucleus	(1)	
for S one 3p orbital has paired electrons and for P 3p sub-shell is singly filled	(1)	
paired electrons repel	(1)	[4]
	in Al outermost electron is in 3p 3p electron is at higher energy or is further away from the nucleus or is more shielded from the nucleus S and P for S one 3p orbital has paired electrons and for P 3p sub-shell is singly filled	in Al outermost electron is in 3p 3p electron is at higher energy or is further away from the nucleus or is more shielded from the nucleus 5 and P for S one 3p orbital has paired electrons and for P 3p sub-shell is singly filled (1) paired electrons repel

Mark Scheme: Teachers' version

Syllabus

Paper

element	Na	Mg	Αl	Si	Р	S
conductivity	high	high	_	moderate	low	low
melting point	low	high	_	high	low	low
	(1)	(1)		(1)	(1)	(1)

one mark for each correct column

Page 3

[5]

(e) germanium/Ge (1) [1]

[Total: 15]

		GCE AS/A LEVEL – October/November 2011	9701	22	
3	(a) the	e overall enthalpy change/energy change/∆H for a reaction		(1)	
	is ir	ndependent of the route taken or ndependent of the number of steps involved ovided the initial and final conditions are the same		(1)	[2]
	(b) (i)	(i) $K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$		(1)	
	(ii)	heat produced= m × c × δ T = 30.0 × 4.18 × 5.2 = 652.08 J per 0.0200 mol of K ₂ CO ₃		(1)	
	(iii)	$0.020 \text{ mol } K_2CO_3 = 652.08 \text{ J}$			
		1 mol $K_2CO_3 = \frac{652.08 \times 1}{0.0200} = 32604 \text{ J}$			
		enthalpy change = -32.60 kJmol ⁻¹		(1)	
	(iv)	to prevent the formation of KHCO ₃ or to ensure complete neutralisation		(1)	[4]
	(c) (i)	$KHCO_3 + HCl \rightarrow KCl + H_2O + CO_2$		(1)	
	(ii)	heat absorbed= m × c × δ T = 30.0 × 4.18 × 3.7 = 463.98 J per 0.0200 mol of KHCO ₃		(1)	
	(iii)	$0.020 \text{ mol KHCO}_3 \equiv 463.98 \text{ J}$			
		1 mol KHCO ₃ = $\frac{463.98 \times 1}{0.0200}$ = 23199 J			
		enthalpy change = +23.20 kJmol ⁻¹		(1)	[3]
	(d) ∆ <i>H</i>	$J = 2 \times (+23.20) - (-32.60) = +79.00 \text{ kJ mol}^{-1}$		(2)	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

[Total: 11]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	22

4 (a)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	22

(b) T + U

or

correct structures (1) correctly displayed ester group (1) [2]

[Total: 7]

5 (a) (i) 1 primary (1) alcohol **not** hydroxyl (1)

2 aldehyde **not** carbonyl (1)

(ii)

test 1			
reagent	Na	PCl ₃ /PCl ₅ /PBr ₃	RCO₂H/H ⁺
observation	gas/H ₂ /effervescence/ fizzing	HC∄HBr steamy fumes	fruity smell
test 2			
reagent	Tollens' reagent	Fehling's reagent	2,4-dinitro- phenylhydrazine
observation	Ag mirror/silver/ black ppt	brick-red ppt red ppt	orange/red/yellow ppt/solid

only award the observation mark if reagent is correct

(4) [7]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	22

5 (c)

route	starting compound	first reagent	intermediate X	second reagent	intermediate Y	third reagent	final compound
A/1	HOCH₂CHO	PCl_3 PCl_5 $SOCl_2$ etc.	C <i>1</i> CH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH ⁻ Tollens' or Fehling's reagents	C <i>I</i> CH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
A/2	HOCH₂CHO	HBr P/Br ₂ etc.	BrCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH [−] Tollens' or Fehling's reagents	BrCH₂CO₂H	NH_3	H ₂ NCH ₂ CO ₂ H
B/1	HOCH₂CHO	PCl_3 PCl_5 $SOCl_2$ etc.	C <i>I</i> CH₂CHO	NH ₃	H₂NCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH [−] Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
B/2	HOCH₂CHO	HBr P/Br ₂ etc.	BrCH₂CHO	NH ₃	H₂NCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH ⁻ Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
С	HOCH₂CHO	Tollens' or Fehling's reagents	HOCH₂CO₂H	KBr/conc. H ₂ SO ₄	BrCH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
mark		(1)	(1)	(1)	(1)	(1)	

[5]

[Total: 14]

(1)

[2]