MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	22

1 (a) (i) mass of $C=\frac{12 \times 0.352}{44}=0.096 \mathrm{~g}$

$$
\begin{equation*}
n(C)=\frac{0.096}{12}=0.008 \tag{1}
\end{equation*}
$$

(ii) mass of $\mathrm{H}=\frac{2 \times 0.144}{18}=0.016 \mathrm{~g}$

$$
\begin{equation*}
n(H)=\frac{0.016}{1}=0.016 \tag{1}
\end{equation*}
$$

(iii) mass of oxygen $=0.240-(0.096+0.016)=0.128 \mathrm{~g}$
$n(O)=\frac{0.128}{16}=0.008$
allow ecf at any stage
(b) $\mathrm{C}: \mathrm{H}: \mathrm{O}=0.008: 0.016: 0.008=1: 2: 1$
allow $\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{0.096}{12}: \frac{0.016}{1}: \frac{0.128}{16}=1: 2: 1$
gives $\mathrm{CH}_{2} \mathrm{O}$
(c) (i) $M_{\mathrm{r}}=\underset{p V}{m R T}=\frac{0.148 \times 8.31 \times 333}{1.01 \times 10^{5} \times 67.7 \times 10^{-6}}$

$$
\begin{equation*}
=59.89 \tag{1}
\end{equation*}
$$

allow 59.9 or 60
(ii) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(d) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{HCO}_{2} \mathrm{CH}_{3}$
(e) the only products of the reaction are the two oxides $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} and copper

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	22

2 (a) $\mathrm{S}(\mathrm{g}) \rightarrow \mathrm{S}^{+}(\mathrm{g})+\mathrm{e}^{-}$ correct equation
correct state symbols
[2]
(b) from Na to Ar ,
electrons are added to the same shell/have same shielding
electrons are subject to increasing nuclear charge/proton number
electrons are closer to the nucleus or atom gets smaller
(c) (i) Mg and Al
in Mg outermost electron is in 3 s and
in Al outermost electron is in $3 p$
$3 p$ electron is at higher energy or is further away from the nucleus or is more shielded from the nucleus
(ii) S and P
for S one $3 p$ orbital has paired electrons and for $P 3 p$ sub-shell is singly filled
paired electrons repel
(d) (i) and (ii)

element	Na	Mg	Al	Si	P	S
conductivity	high	high	-	moderate	low	low
melting point	low	high	-	high	low	low

(1)
(1)
(1)
(1)
(1)
one mark for each correct column
(e) germanium/Ge
[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	22

3 (a) the overall enthalpy change/energy change $/ \Delta H$ for a reaction
is independent of the route taken or
is independent of the number of steps involved provided the initial and final conditions are the same
(b) (i) $\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(ii) heat produced $=\mathrm{m} \times \mathrm{c} \times \delta \mathrm{T}=30.0 \times 4.18 \times 5.2$

$$
\begin{equation*}
=652.08 \mathrm{~J} \text { per } 0.0200 \mathrm{~mol} \text { of } \mathrm{K}_{2} \mathrm{CO}_{3} \tag{1}
\end{equation*}
$$

(iii) $0.020 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3} \equiv 652.08 \mathrm{~J}$
$1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3} \equiv \frac{652.08 \times 1}{0.0200}=32604 \mathrm{~J}$
enthalpy change $=-32.60 \mathrm{kJmol}^{-1}$
(iv) to prevent the formation of KHCO_{3} or to ensure complete neutralisation
(c) (i) $\mathrm{KHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(ii) heat absorbed $=\mathrm{m} \times \mathrm{c} \times \delta \mathrm{T}=30.0 \times 4.18 \times 3.7$

$$
\begin{equation*}
=463.98 \mathrm{~J} \text { per } 0.0200 \mathrm{~mol} \text { of } \mathrm{KHCO}_{3} \tag{1}
\end{equation*}
$$

(iii) $0.020 \mathrm{~mol} \mathrm{KHCO} 3 \equiv 463.98 \mathrm{~J}$

$$
\begin{align*}
& 1 \mathrm{~mol}_{\mathrm{KHCO}}^{3} 3
\end{align*} \frac{463.98 \times 1}{0.0200}=23199 \mathrm{~J} .
$$

(d) $\Delta H=2 \times(+23.20)-(-32.60)=+79.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Page 5 Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2011	9701	22

4 (a)

> correct \mathbf{T}
> correct \mathbf{U}
> correct \mathbf{V}
> correct $>\mathrm{CO}^{\text {group in } \mathbf{W}}$
> correct $-\mathrm{CO}_{2} \mathrm{H}$ group in \mathbf{W}
(1)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	22

(b) $\mathrm{T}+\mathrm{U}$

or

correct structures
(1)
correctly displayed ester group
(a) (i) 1 primary

2 aldehyde not carbonyl
(ii)

test 1			
reagent	Na	$\mathrm{PCl}_{3} / \mathrm{PCl}_{5} / \mathrm{PBr}_{3}$	$\mathrm{RCO}_{2} \mathrm{H} / \mathrm{H}^{+}$
observation	gas/ $\mathrm{H}_{2} /$ effervescence/ fizzing	$\mathrm{HCl} / \mathrm{HBr}$ steamy fumes	fruity smell
test 2		Fehling's reagent	2,4 -dinitro- phenylhydrazine
reagent	Tollens' reagent	brick-red ppt red ppt	orange/red/yellow ppt/solid
observation	Ag mirror/silver/ black ppt		

only award the observation mark if reagent is correct
(4) [7]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	22

(b) (i)

(ii)

5 (c)

route	starting compound	first reagent	intermediate X	second reagent	intermediate Y	third reagent	final compound
A/1	$\mathrm{HOCH}_{2} \mathrm{CHO}$	$\begin{gathered} \mathrm{PCl}_{3} \\ \mathrm{PCl} l_{5} \\ \mathrm{SOCl}_{2} \\ \text { etc. } \end{gathered}$	$\mathrm{ClCH}_{2} \mathrm{CHO}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$ Tollens' or Fehling's reagents	$\mathrm{ClCH} 2 \mathrm{CO}_{2} \mathrm{H}$	NH_{3}	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
A/2	$\mathrm{HOCH}_{2} \mathrm{CHO}$	HBr $\mathrm{P} / \mathrm{Br}_{2}$ etc.	$\mathrm{BrCH}_{2} \mathrm{CHO}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$ Tollens' or Fehling's reagents	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	NH_{3}	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
B/1	$\mathrm{HOCH}_{2} \mathrm{CHO}$	$\begin{gathered} \mathrm{PCl}_{3} \\ \mathrm{PCl} l_{5} \\ \mathrm{SOCl}_{2} \\ \text { etc. } \end{gathered}$	$\mathrm{C} / \mathrm{CH}_{2} \mathrm{CHO}$	NH_{3}	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CHO}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$ Tollens' or Fehling's reagents	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
B/2	$\mathrm{HOCH}_{2} \mathrm{CHO}$	HBr $\mathrm{P} / \mathrm{Br}_{2}$ etc.	$\mathrm{BrCH}_{2} \mathrm{CHO}$	NH_{3}	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CHO}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$ $\mathrm{KMnO}_{4} / \mathrm{OH}^{-}$ Tollens' or Fehling's reagents	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
C	$\mathrm{HOCH}_{2} \mathrm{CHO}$	Tollens' or Fehling's reagents	$\mathrm{HOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{KBr} /$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{BrCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	NH_{3}	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
mark		(1)	(1)	(1)	(1)	(1)	

[Total: 14]

