MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

1 In this question, numerical answers should be given to three significant figures.

(a) (i)
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 (1)

(ii)
$$M_{\rm r} \, {\rm C}_6 {\rm H}_{12} {\rm O}_6 = 180$$
 (1)
180 g ${\rm C}_6 {\rm H}_{12} {\rm O}_6 \rightarrow 6 \, {\rm mol} \, {\rm CO}_2$

$$1200 \text{ g } C_6 \text{H}_{12} \text{O}_6 \rightarrow \frac{6 \times 200}{180} \text{ mol } \text{CO}_2$$

allow ecf on wrong equation and/or wrong
$$M_{\rm r}$$
 (1)

(iii) 6.82×10^9 people will produce $6.82 \times 10^9 \times 40.0$ mol CO₂

$$= 2.728 \times 10^{11} \,\mathrm{mol}\,\mathrm{CO}_2 \tag{1}$$

 $2.728 \times 10^{11} \text{ mol } \text{CO}_2 \equiv 2.728 \times 10^{11} \times 44 = 1.20032 \times 10^{13} \text{ g}$ = 1.20 × 10⁷ tonnes CO₂ to 3 sf (1) [5]

(b) (i) $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$ or $C_8H_{18} + 121/_2O_2 \rightarrow 8CO_2 + 9H_2O$ (1) (ii) $M_r C_8H_{18} = (8 \times 12) + (18 \times 1) = 114$ (1)

mass of 4.00 dm³ of octane =
$$4000 \times 0.70 = 2800$$
 g (1)

$$n(C_8H_{18}) = \frac{2800}{114} = 24.56140351 \text{ mol in } 4.00 \text{ dm}^3$$

$$= 24.6 \,\mathrm{mol} \,\mathrm{to} \,3\,\mathrm{sf}$$
 (1)

(iii) $2 \mod C_8 H_{18}$ produce $16 \times 44 \gcd CO_2$

24.6 mol C₈H₁₈ produce
$$\frac{16 \times 44 \times 24.6 \text{ g}}{2}$$
 CO2
= 8659.2 g CO₂

 $= 8660 \text{ g CO}_2 \text{ to } 3 \text{ sf}$ (1) [5]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

(c) 6.82×10^9 people produce 1.20×10^7 tonnes CO₂ per day

 $8660\,g\,CO_2$ produced when car travels $100\,km$

when travelling 1 km, car produces
$$\frac{8660}{100} = 8.66 \times 10^{-1} \text{ g}$$

= 8.66 × 10⁻⁵ tonnes (1)
to produce 1.20 × 10⁷ tonnes CO₂ car must travel
 $\frac{1.20 \times 10^{7}}{8.66 \times 10^{-5}}$

$$= 1.385681293 \times 10^{11} = 1.39 \times 10^{11} \text{ km to } 3 \text{ sf}$$
 (1) [2]

(d) possible pollutants and the damage they cause

СО	NO	50.		H ₂ O	С	unburned	
	NO	NO2	<u>L</u>	2	_	C_8H_{18}	
toxic	toxic	toxic	toxic				
	global	respiratory	respiratory	global	respiratory	respiratory	
	warming	problems	problems	warming	problems	problems	
	photochemical smog	acid rain	acid rain				

compound damage

(1) (1) [2]

[Total: 14]

	Pa	ge 4	1	Mark Scheme: Teachers' version	Syllabus	Paper	/
	GCE AS/A LEVEL – October/November 2012				9701	23	
2	(a)	(i)	white	te fumes/steamy fumes		(1)	
		(ii)		$Cl + H_2SO_4 \rightarrow NaHSO_4 + HCl or$ $aCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$		(1)	
		(iii)		acid that is completely ionised in solution or acid that is completely dissociated into H^+ ions in soluti	on	(1)	[3]
	(b)	(i)	irrita	ble/violet vapour (I ₂) or black/brown solid (I ₂) or ating/acrid gas (SO ₂) or stinking gas (H ₂ S) or bw solid (S)		(1)	
		(ii)		c. H ₂ SO ₄ is an oxidising agent or HI is a reducing or which reduces H		(1) (1)	[3]
	(c)	(i)		te ppt formed – not creamy white or off white ch dissolves in $NH_3(aq)$		(1) (1)	
		(ii)		$Cl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$ or (aq) + Ag ⁺ (aq) $\rightarrow AgCl(s)$			
				ation state symbols correct		(1) (1)	
			-	$Cl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+ Cl^-(aq)$ or $Cl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2] Cl(aq)$			
				ation state symbols correct		(1) (1)	
		(iii)		cipitate is yellow cipitate does not dissolve		(1) (1)	[8]
						[Total:	14]

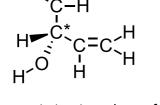
	Ра	ge 5	5		Scheme: Tead					labus	Paper	
				GCE A5/A	LEVEL – Octo	Der/N	lovember	2012	2 9	701	23	
3	(a)			ture of ammon nargarine or hy	ia/Haber proces /drocracking	ss or	hydrogen	ation	of fats/oils	or	(1)	[1]
	(b)	(i)	equi	easing the pro librium will mov er moles/molec		more	moles/me	olecu	les on RHS	6	(1) (1)	
		(ii)	equi	reasing the ten librium will mov ard reaction is	ve to LHS						(1) (1)	[4]
	(c)			increase s will occur moi	e frequently						(1) (1)	[2]
	(d)	(i)	<u>K_c =</u> [C	<u>[CO₂][H₂]</u> O][H ₂ 0]							(1)	
		(ii)			$CO(\alpha)$	<u>т</u> Г			$CO(\alpha)$	⊥ 니 (a)	,	
			eq	ial moles uil moles uil concn./mol 1 ⁻³	CO(g) 0.40 (0.40 – y) <u>(0.40 – y)</u> 1		l₂O (g) 0.40 0.40 – y) 0.40 – y) 1		$CO_2(g)$ 0.20 (0.20 + y) (0.20 + y) 1			
			K _c =	$\frac{(0.20 + y)^2}{(0.40 - y)^2} = 6$	5.40 × 10 ⁻¹						(1)	
			•	$(0 + y) = \sqrt{6.40}$ (0 - y)	$10^{-1} = 0.8$							
			(0.20	0 + y) = 0.8 × (0.40 – y)							
			0.20	+ y = 0.32 – 0	.8 y							
			1.8 y	<i>i</i> = 0.12								
			give	s y = 0.067							(1)	
			at eo	quilibrium								
					0.40 - 0.067) = 0.20 + 0.067) =						(1)	
			allov	v ecf as approp	oriate						[5]	
										[Т	otal: 12]	

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23

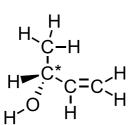
4 (a) (i)

reaction	organic compound	reagent	structural formulae of organic product
А	CH₃CH(OH)CH₃	NaBH ₄	no reaction
В	CH ₃ COCH ₃	Tollens' reagent warm	no reaction
С	CH ₃ CO ₂ CH(CH ₃) ₂	KOH(aq) warm	CH ₃ CO ₂ K or CH ₃ CO ₂ ⁻ + (CH ₃) ₂ CHOH
D	(CH₃)₃COH	Cr ₂ O ₇ ^{2−} /H ⁺ heat under reflux	no reaction
Е	CH ₃ COCH ₃	NaBH₄	CH ₃ CH(OH)CH ₃
F	(CH₃)₃COH	PC <i>l</i> ₅	(CH ₃) ₃ CC <i>l</i>
G	CH₃CH=CHCH₂OH	MnO₄⁻/H⁺ heat under reflux	CH ₃ CO ₂ H + HO ₂ CCO ₂ H

each correct answer gets 1


(9 × 1)

(ii)


reaction	colour at the beginning of the reaction	colour at the end of the reaction
G	purple	colourless
Ū	partie	not clear

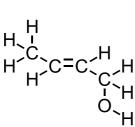
(1 + 1 + 1) [12]

[Total: 12]

correct structure drawn fully displayed chiral centre clearly shown by*

(iii)

(1)


(1) (1)

[8]

[Total: 8]

(5 x 1)

(ii)

each correct answer gets 1

;C ____C=C(

с=с^{_н}_н

CH₃CH=CHCH₂OH

CH₂=CHCH(OH)CH₃

Н

CH₂=CHCH₂CH₂OH CH₃CH₂COCH₃ CH₃CH₂CH₂CHO

J

Κ

5 (a) (i)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	23